Using Delaunay triangulation for fingerprint template generation

Бесплатный доступ

Today, fingerprint identification is the most common method of biometric identification. Existing fingerprint identification models have some defects that reduce the speed and quality of identification. So most of the models do not take into account the topological characteristics of images, for example, the classical method of measuring the ridge count value may produce incorrect results in areas of significant curvature of the ridge lines. This paper presents a new mathematical model for fingerprint identification, taking into account their topological characteristics. Identification is performed on the basis of templates. The templates contain a list of minutiae detected on the image and a list of ridge lines. For the ridge lines and minutiae, sets of topological vectors are constructed. The result of building topological vectors does not depend on the location of minutiae and takes into account their possible mutations, which increases the stability of the proposed mathematical model. Additionally, the stability of the model is ensured by combining the base topological vectors constructed for all minutiae and ridge lines into an expanded topological vector. This view allows you to significantly reduce the size of the template and optimize the use of memory. To compare the fingerprints the Delaunay triangulation is used based on the list of constructed topological vectors. 112 possible classes for topological vectors are defined. This approach allows you to increase the speed of identification up to 10 times while maintaining its accuracy. The proposed classification is resistant to rotation and displacement of images.

Еще

Fingerprint template, delaunay triangulation, minutiae, topology vector model

Короткий адрес: https://sciup.org/147232266

IDR: 147232266   |   DOI: 10.14529/ctcr190303

Список литературы Using Delaunay triangulation for fingerprint template generation

  • Bebis G., Deaconu T., Georgiopoulos M. Fingerprint Identification Using Delaunay Triangulation // Proc. 1999 International Conference on Information Intelligence and Systems (ICIIS99). Washington, DC, 1999, pp. 452-459. DOI: 10.1109/iciis.1999.810315
  • Jain A.K., Hong L., Bolle R. On-line Fingerprint Verification // IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, vol. 19, no 4, pp. 302-313. DOI: 10.1109/34.587996
  • Jiang X., Yau W.-Y. Fingerprint Minutiae Matching Based on the Local and Global Structures // Proc. 15th Internet Conference Pattern Recognition (ICPR, 2000). Barcelona, Spain, 2000, vol. 2, pp. 1042-1045. DOI: 10.1109/ICPR.2000.906252
  • Gonzalez R., Woods R. Digital Image Processing, 2006.
  • Maltoni D., Maio D., Jain A.K. Handbook of Fingerprint Recognition. New York, Springer-Verlag, 2003. 348 p. DOI: 10.1007/978-1-84882-254-2
  • Местецкий Л.М. Непрерывная морфология бинарных изображений. М: Физматлит, 2009. 288 p.
  • Ali H.M., Corraya S. Line Profile-Based Fingerprint Matching // Proc. 2016 International Workshop on Computational Intelligence (IWCI). Dhaka, Bangladesh, 2016, pp. 115-119.
  • DOI: 10.1109/IWCI.2016.7860350
  • Kamath S.K.M., Rajeev S., Panetta K., Again S.S. Fingerprint Authentication Using Geometric Features // Proc. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). Waltham, MA US, 2017, pp. 1-7.
  • DOI: 10.1007/s10044-003-0201-2
  • Kovacs-Vajna Zs., Miklos A. Fingerprint Verification System Based on Triangular Matching and Dynamic Time Warping // IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, vol. 22, no. 11, pp. 1266-1276.
  • DOI: 10.1109/34.888711
  • Liang X., Asano T., A Linear Time Algorithm for Binary Fingerprint Image Denoising Using Distance Transform // IEICE TRANSACTIONS on Information and Systems, 2006, vol. E89-D, no. 4, pp. 1534-1542.
  • DOI: 10.1093/ietisy/e89-d.4.1534
  • Wayman J., Jain A.K., Maltoni D., Maio D. Biometric Systems: Technology, Design and Performance Evaluation. Springer-Verlag, 2006.
  • DOI: 10.1007/b138151
  • Xiao Y., Yan H. Facial Feature Location with Delaunay Triangulation / Voronoi Diagram Calculation // Proc. Selected Papers from 2001 Pan-Sydney Area Workshop on Visual Information Processing (VIP2001), CRPIT, vol. 11. Feng D.D., Jin J., Eades P. and Yan H., Eds. ACS, 2002, pp. 103-108.
  • Ratha N.K., Karu K., Chen S., Jain A.K. A Real-Time Matching System for Large Fingerprint Databases // IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, vol. 18, no. 8, pp. 799-813.
  • DOI: 10.1109/34.531800
  • Liao C.C., Chiu C.-T. Fingerprint Recognition with Ridge Features and Minutiae on Distortion // Proc. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China, 2016, pp. 2109-2113.
  • DOI: 10.1109/ICASSP.2016.7472049
  • Liu E., Cao K. Minutiae Extraction from Level 1 Features of Fingerprint // IEEE Transactions on Information Forensics and Security, 2016, vol. 11, no. 9, pp. 1893-1902.
  • DOI: 10.1109/TIFS.2010.2103940
  • Wang H., Gavrilova M., Luo Y., Rokne J. An Efficient Algorithm for Fingerprint Matching // Proc. International Conference on Pattern Recognition (ICPR 2006), Hong Kong, 2006, pp. 1034-1037.
  • DOI: 10.1109/ICPR.2006.236
  • Wang C., Gavrilova M. Delaunay Triangulation Algorithm for Fingerprint Matching // Proc. 2006 3rd International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2006), Alberta, Canada, 2006, pp. 208-216.
  • DOI: 10.1109/ISVD.2006.19
  • Macedo M.J., Yang W., Zheng G., Johnstone M.N. A Comparison of 2D and 3D Delaunay Triangulations for Fingerprint Authentication // Proc. 15th Australian Information Security Management Conference. Perth, Australia, 2017, pp. 108-115.
  • DOI: 10.4225/75/5a84f3ca95b4b
  • Dremin A., Khachay M., Leshko A. Fingerprint Identification Algorithm Based on Delaunay Triangulation and Cylinder Codes // Proc. Third International Conference on Analysis of Images, Social Networks and Texts (AIST 2014), Yekaterinburg, Russia, 2014, pp. 128-139.
  • DOI: 10.1007/978-3-319-12580-0_13
  • Elmouhtadi M., Elfkihi S., Aboutajdine D. Fingerprint Identification Based on Hierarchical Triangulation // Journal of Information Processing Systems, 2018, vol. 14, no. 2, pp. 435-447.
  • DOI: 10.3745/JIPS.02.0084
  • Ghaddab M.H., Jouini K., Korbaa O. Fast and Accurate Fingerprint Matching Using Expanded Delaunay Triangulation // Proc. IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). Hammamet, Tunisia, 2017, pp. 751-758.
  • DOI: 10.1109/AICCSA.2017.33
  • Sparrow M.K. Vector Based Topological Fingerprint Matching. Patent 5631971 USA, Int. Cl. G 06 K 9/00. Field Jul. 15, 1994; Date of patent May. 20, 1997; U.S.Cl. 382/125.
  • ISO/IEC Information Technologies. Biometrics. Biometric Data Interchange Formats. Part 2. Finger Minutiae Data, 2011.
Еще
Статья научная