Using laser point scanning thermography for quality monitoring of products made of composite materials

Автор: Divin A.G., Karpov S.V., Zakharov Yu.A., Karpova N.A., Samodurov A.A., Golovin D.Yu., Tyurin A.I.

Журнал: Инженерные технологии и системы @vestnik-mrsu

Рубрика: Приборы и методы экспериментальной физики

Статья в выпуске: 1, 2024 года.

Бесплатный доступ

Introduction. Control of the presence of subsurface defects in products from composite materials is necessary for verification of products after release from production and in the process of operation. Aim of the Study. The purpose of the presented work is to estimate the parameters of subsurface defects using local laser thermography, suitable for quality control of both small objects and suspicious areas of large objects with curved surfaces.

Laser scanning thermography, non-destructive testing, composite materials, finite element analysis, mathematical modeling

Короткий адрес: https://sciup.org/147243165

IDR: 147243165   |   DOI: 10.15507/2658-4123.034.202401.145-163

Список литературы Using laser point scanning thermography for quality monitoring of products made of composite materials

  • He Y., Pan M., Chen D., Luo F. PEC Defect Automated Classification in Aircraft Multi-Ply Structures with Interlayer Gaps and Lift-Offs. NDT& EInternational. 2013;53:39-46. https://doi.org/10.1016/j. ndteint.2012.10.007
  • Pawlak A.M., Gorny T., Dopierala L., Paczos P. The Use of CFRP for Structural Reinforcement -Literature Review. Metals. 2022;12(9):1470. https://doi.org/10.3390/met12091470
  • Mathiassen K., Fjellin J.E., Glette K., Hol P.K., Elle O.J. An Ultrasound Robotic System Using the Commercial Robot UR5. Front. Robot. AI. 2016;3:1. https://doi.org/10.3389/frobt.2016.00001
  • Frhaan W.K.M., Abu Bakar B.H., Hilal N., Al-Hadithi A.I. CFRP for Strengthening and Repairing Reinforced Concrete: A Review. Innovative Infrastructure Solutions. 2021;6:49. https://doi.org/10.1007/ s41062-020-00417-5
  • Rajak D.K., Wagh P.H., Linul E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A review. Polymers. 2021;13(21):3721. https://doi.org/10.3390/ polym13213721
  • Siljama O., Koskinen T., Jessen-Juhler O., Virkkunen I. Automated Flaw Detection in Multi-Channel Phased Array Ultrasonic Data Using Machine Learning. Journal of Nondestructive Evaluation. 2021;40:67. https://doi.org/10.1007/sl0921-021-00796-4
  • Honarvar F., Varvani-Farahani A. A Review of Ultrasonic Testing Applications in Additive Manufacturing: Defect Evaluation, Material Characterization, and Process Control. Ultrasonics. 2020;108:106227. https://doi.org/10.1016/) .ultras.2020.106227
  • Golovin D.Yu., Divin A.G., Samodurov A.A., Tyurin A.I., Golovin Yu.I. A New Rapid Method of Determining the Thermal Diffusivity of Materials and Finished Articles. Journal of Engineering Physics and Thermophysics. 2020;93:234-240. https://doi.org/10.1007/s10891-020-02113-8
  • Golovin Yu.I., Samodurov A.A., Golovin D.Yu., Tyurin A.I., Divin A.G., Zakharov Yu.A. Measurement of the Thermal Diffusivity of Optical Materials and Products by a New Thermographic Express Method That Does Not Require Cutting Samples Out of the Bulk. Measurement Techniques. 2023;66:36-44. https://doi.org/10.1007/s11018-023-02187-9
  • Li Y., Yang Z., Zhu J., Ming A., Zhang W., Zhang J. Investigation on the Damage Evolution in the Impacted Composite Material Based on Active Infrared Thermography. NDT & E International. 2016;83:114-122. https://doi.org/10.1016/j.ndteint.2016.06.008
  • Golovin Yu.I., Golovin D.Yu., Tyurin A.I. Dynamic Thermography for Technical Diagnostics of Materials and Structures. Russian Metallurgy (Metally). 2021:2021:512-527. https://doi.org/10.1134/ S0036029521040091
  • Berthe J., Chaibi S., Portemont G., Paulmier P., Laurin F., Bouvet C. High-Velocity Infrared Thermography for In-Situ Damage Monitoring During Impact Test. Composite Structures. 2023;314:116934. https://doi.org/10.1016/j.compstruct.2023.116934
  • Doshvarpassand S., Wang X. Article an Automated Pipeline for Dynamic Detection of Sub-Surface Metal Loss Defects Across Cold Thermography Images. Sensors. 2021;21(14):4811. https://doi.org/10.3390/ s21144811
  • Khodayar F., Lopez F., Ibarra-Castanedo C., Maldague X. Optimization of the Inspection of Large Composite Materials Using Robotized Line Scan Thermography. Journal of Nondestructive Evaluation. 2017;36:32. https://doi.org/10.1007/s10921-017-0412-x
  • Khodayar F., Lopez F., Ibarra-Castanedo C., Maldague X. Parameter Optimization of Robotize Line Scan Thermography for CFRP Composite Inspection. Journal of Nondestructive Evaluation. 2018;37:5. https://doi.org/10.1007/s10921-017-0459-8
  • Jiao D., Shi W., Liu Z., Xie H. Laser Multi-mode Scanning Thermography Method for Fast Inspection of Micro-cracks in TBCs Surface. Journal of Nondestructive Evaluation. 2018;37:30. https://doi. org/10.1007/s10921-018-0485-1
  • Bang H.T., Park S., Jeon H. Defect Identification in Composite Materials Via Thermography and Deep Learning Techniques. Composite Structures. 2020;246:112405. https://doi.org/10.1016/jxomp-struct.2020.112405
  • Rellinger T., Underhill P.R., Krause T.W., Wowk D. Combining Eddy Current, Thermography and Laser Scanning to Characterize Low-Velocity Impact Damage in Aerospace Composite Sandwich Panels. NDT & E International. 2021;120:102421. https://doi.org/10.1016/j.ndteint.2021.102421
  • Marani R., Campos-Delgado D.U. Depth Classification of Defects in Composite Materials by Long-Pulsed Thermography and Blind Linear Unmixing. Composites Part B: Engineering. 2023;248:110359. https://doi.org/10.1016/j.compositesb.2022.110359
  • Wei Y., Zhang S., Luo Y., Ding L., Zhang D. Accurate Depth Determination of Defects in Composite Materials Using Pulsed Thermography. Composite Structures. 2021;267:113846. https://doi.org/10.1016/j. compstruct.2021.113846
  • Wang Z., Wan L., Zhu J., Ciampa F. Evaluation of Defect Depth in CFRP Composites by Long Pulse Thermography. NDT & E International. 2022;129:102658. https://doi.org/10.1016/j.ndteint.2022.102658
  • Ibarra-Castanedo C., Servais P., Ziadi A., Klein M., Maldague X. RITA - Robotized Inspection by Thermography and Advanced Processing for the Inspection of Aeronautical Components. 2014. https:// doi.org/10.21611/qirt.2014.164
  • Vandone A., Rizzo P., Vanali M. Image Processing for the Laser Spot Thermography of Composite Materials. In: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2012. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. San Diego, 2012. Vol. 8347. https://doi.org/10.1117/12.914713
  • Archer T., Beauchene P., Passilly B., Roche J.M. Use of Laser Spot Thermography for the Non-Destructive Imaging of Thermal Fatigue Microcracking of a Coated Ceramic Matrix Composite. Quantitative InfraRed Thermography Journal. 2021;18(3):141-158. https://doi.org/10.1080/17686733 .2019.1705732
  • Li Y., Song Y.J., Yang Z.W., Xie X.Y. Use of Line Laser Scanning Thermography for the Defect Detection and Evaluation of Composite Material. Science and Engineering of Composite Materials. 2022;29(1). https://doi.org/10.1515/secm-2022-0007
  • Wang Q., Hu Q., Qiu J., Pei C., Li X., Zhou H., et al. Image Enhancement Method for Laser Infrared Thermography Defect Detection in Aviation Composites. Optical Engineering. 2019;58(10):103104. https://doi.org/10.1117/Loe.58.10.103104
  • Narasimhan T.N. Fourier's Heat Conduction Equation: History, Influence, and Connections. Reviews Geophysics. 1999;37(1):151-172. https://doi.org/10.1029/1998RG900006
  • Chulkov A., Vavilov V., Nesteruk D., Burleigh D., Moskovchenko A. A Method and Apparatus for Characterizing Defects in Large Flat Composite Structures by Line Scan Thermography and Neural Network Techniques. Frattura ed Integrita Strutturale. 2023;17(63):110-121. https://doi.org/10.3221/ IGF-ESIS.63.11
  • Hernandez-Valle S., Peters K. Numerical Simulation of Phase Images and Depth Reconstruction in Pulsed Phase Thermography. Measurement Science and Technology. 2015;26(11): 115602. https://doi. org/10.1088/0957-0233/26/11/115602
  • Shen J., Zhang Y. [Calculation of Solid Cylinder Pore Defect Depth in Hot Shaft Forgings by Improved Fireworks Algorithm]. Zhongguo Jixie Gongcheng/China Mechanical Engineering. 2023;34(4). (In Chin.) https://doi.org/10.3969/jissn.1004-132X.2023.04.002
Еще
Статья научная