Using of the contour method to solving the problem of optimal traffic distribution in the network

Автор: Gaipov K.E., Kuznetsov A.A., Krikunov I.L.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Informatics, computer technology and management

Статья в выпуске: 3 vol.24, 2023 года.

Бесплатный доступ

The purpose of this work is to create a method for solving the problem of optimal traffic distribution in a network using the contour data analysis method. In the first section of the work, the principle of converting any available network to a contour form is explained, and the case is considered both for networks without loss and for networks with losses. The second section shows in a general way the method of bringing the network in contour form to a system of non-linear inequalities, by solving which one can obtain a certain distribution of traffic in the system. In the final section, using the M/M/1/N queuing system as an example, the solution of the problem of optimal traffic distribution according to the loss minimization criterion is shown. The initial data for the task were the incidence matrix, service intensity and buffer dimension for communication channels. A feature of the proposed algorithm is the search for a contour matrix, for the compilation of which it is proposed to use loss edges as elements of the spanning tree of the graph, which allows you to immediately determine the contour matrix using the concept of a fundamental cycle of a graph. This approach to optimal traffic distribution reduces the number of variables used compared to the known methods based on loopless routes, and also does not require their preliminary search, since they are determined from the dimension of the incidence matrix of the simulated network graph.

Еще

Contour method, network traffic optimization

Короткий адрес: https://sciup.org/148329689

IDR: 148329689   |   DOI: 10.31772/2712-8970-2023-24-3-418-435

Список литературы Using of the contour method to solving the problem of optimal traffic distribution in the network

  • Moy J. OSPF Version 2, STD 54, RFC 2328, April 1998.
  • Sridharan A., Guerin R., Diot C. Achieving near-optimal traffic engineering solutions for current OSPF/IS-IS networks. IEEE/ACM Trans. Netw. 2005, Vol. 13, P. 234–247.
  • Yen J. Y. Finding the K Shortest Loopless Paths in a Network. Management Science. 1971, Vol. 17, No. 11, P. 712–716.
  • Awduche D., Chiu A., Elwalid A., Widjaja I., Xiao X. RFC3272, Overview and Principles of Internet Traffic Engineering. Available at: http://www.ietf.orglrfc/rfc3272.txt.
  • Sharafat A. R., Das S., Parulkar G. M., McKeown N. MPLS-TE and MPLS VPN Switсh OpenFlow. ACM SIGCOMM 2011 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications. Toronto, ON, Canada, August 2011.
  • Shibanov A. P., Koryachko V. P., Izhvanov Y. L. Modeling of Aggregated Telecommunication Link with Technology of Open Flows. Radioengineering. 2012, No. 3, P. 109–112.
  • Lemeshko A. V., Vavenko T. Y. [Improvement of Flow Model of Multipath Routing on the Basis Load Balancing]. Problems of telecommunications. 2012, Vol. 6, No. 1, P. 12–29 (In Russ.).
  • Lemeshko A. V., Vavenko T. V. [Development and Research of the Flow Model of Adaptive Routing in the Software-Defined Networks with Load Balancing]. Doklady Tomskogo Gosudarstvennogo Universiteta Sistem Upravleniya i Radioyelektroniki [Proc. of Tomsk State University of Control Systems and Radioelectronics]. 2013, Vol. 29, No. 3, P. 100–108.
  • Merindol P. Improving Load Balancing with Multipath Routing. Proc. of the 17-th International Conference on Computer Communications and Networks (IEEE ICCCN 2008). 2008, P. 54–61.
  • Mikhailenko V. S., Solodovnik M. S., Analysis of the Adaptive Neural Network Router. Automatic Control and Computer Science. 2016, Vol. 50, No. 1, P. 46–53.
  • Perepelkin D. A., Cyganov I. Ju. [Algorithm for pairwise transitions in computer networks based on the subnet routing method]. Vestnik RGRTU. 2016, No. 57, P. 56–62 (In Russ.).
  • Goulamghoss M. I., Bassoo V. Analysis of traffic engineering and fast reroute on multiprotocol label switching. J Ambient Intell Human Comput. 2021, No. 12, P. 2409–2420. https://doi.org/10.1007/s12652-020-02365-5.
  • Papan J., Segec P., Yeremenko O., Bridova I., Hodon M. Enhanced Multicast Repair Fast Reroute Mechanism for Smart Sensors IoT and Network Infrastructure. Sensors. 2020, No. 20, P. 3428. https://doi.org/10.3390/s20123428.
  • Perepelkin D. A., Byshov V. S. Modul' dinamicheskoy balansirovki potokov dannykh v programmno-konfiguriruemykh setyakh s obespecheniem kachestva setevykh servisov [Modul' dinamicheskoy balansirovki potokov dannyh v programmno-konfiguriruemyh setyah s obespecheniem kachestva setevyh servisov]. Patent RF, no. 2017615438, 2017.
  • Perepelkin D. A., Ivanchikova M. A. Modul' mnogoputevoy marshrutizatsii v programmnokonfiguriruemykh setyakh na baze protokola OpenFlow [Modul' mnogoputevoj marshrutizacii v programmno-konfiguriruemyh setjah na baze protokola OpenFlow]. Patent RF no. 2017612645, 2017.
  • Ishokov D. S., Zaripova Je. R. Programma dinamicheskoy mezhuzlovoy balansirovki trafika [Programma dinamicheskoj mezhuzlovoj balansirovki trafika]. Patent RF no. 2015662938, 2016.
  • Perepelkin D. A., Byshov B. S. Sistema mnogoputevoy adaptivnoy marshrutizatsii i balansirovki nagruzki v dinamicheskikh korporativnykh setyakh [Sistema mnogoputevoj adaptivnoj marshrutizacii i balansirovki nagruzki v dinamicheskih korporativnyh setjah]. Patent RF no. 2015662569, 2015.
  • Omel'chenko A. V. Teoriya grafov [Graph theory]. Moscow, MCNMO Publ., 2018, 416 p.
  • Aliev T. I. Osnovy modelirovaniya diskretnykh sistem [Fundamentals of modeling discrete systems]. SPb., SPbGU ITMO Publ., 2009, 363 p.
  • Gaipov K. Je., Krikunov I. L., Demicheva A. A. Optimal'noe raspredelenie trafika seti massovogo obsluzhivaniya na osnove konturnogo metoda po kriteriyu minimuma poter' [Optimal'noe raspredelenie trafika seti massovogo obsluzhivanija na osnove konturnogo metoda po kriteriju minimuma poter']. Patent RF no. 2022684654, 2022.
  • Bertsekas D., Gallager R. Seti peredachi dannykh [Data networks]. Moscow, Mir Publ., 1989, 544 p.
Еще
Статья научная