Условия исправления сферической аберрации третьего порядка в шарообразной линзе со сферическим распределением показателя преломления

Бесплатный доступ

Рассмотрена шарообразная линза. Показатель преломления этой линзы является функцией расстояния от центра шара. Получены условия, при которых такая линза свободна от сферической аберрации третьего порядка, если на линзу падает параллельный пучок лучей.

Градиентная оптика, линза люнебурга, аберрации третьего порядка, численное интегрирование

Короткий адрес: https://sciup.org/140296235

IDR: 140296235   |   DOI: 10.18287/2412-6179-CO-1104

Список литературы Условия исправления сферической аберрации третьего порядка в шарообразной линзе со сферическим распределением показателя преломления

  • Marchand EW. Gradient index optics. New York, San Francisco, London: Academic Press; 1978.
  • Lehn WH. Isaac Newton and the astronomical refraction. Appl Opt 2008; 47(34): H95-H105. DOI: 10.1364/AO.47.000H95.
  • Matthiessen L. Ueber die Beziehungen, welche zwischen dem Brechungsindex des Kerncentrums der Kry stalllinse und den Dimensionen des Auges bestehen. Pfüger's Archiv für die gesamte Physiologie des Menschen und der Tiere 1882; 27: 510-523.
  • Maxwell JC. Problems 3. Cambr Dublin Math J 1854; 8: 188.
  • Maxwell JC. On the general laws of optical instruments. The Quarterly Journal of Pure and Applied Mathematics 1858; 2: 233-246.
  • Luneburg RK. Mathematical theory of optics. Providence, Rhode Island: Brown University; 1944.
  • Fletcher A, Murphy T, Young A. Solution of two optical problems. Proc R Soc London Ser A 1954; 223(13): 216-225.
  • Doric S, Munro E. General solution of the nonfull-aperture Luneburg lens problem. J Opt Soc Am 1983; 73(8): 10831086.
  • Gordon JM. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices. Appl Opt 2000; 39(22): 3825-3832.
  • Colombini E. Index-profile computation for the generalized Luneburg lens. J Opt Soc Am 1981; 71(11): 14031405. DOI: 10.1364/JOSA.71.001403.
  • Kotlyar VV, Melekhin AS. Abel transform to calculate the gradient of optical elements with spherically symmetric distribution of the refractive index. Computer Optics 2002; 24: 48-52.
  • Ilinsky R. Gradient-index meniscus lens free of spherical aberration. J Opt A-Pure Appl Opt 2000; 2(5): 449-451. DOI: 10.1088/1464-4258/2/5/316.
  • Demetriadou A, Hao Y. Slim Luneburg lens for antenna applications. Opt Express 2011; 19(21): 19925-19934. DOI: 10.1364ЮЕ.19.019925.
  • Leng LY, Yang Y, Wang N, Ma YG, Ong CK. Broadband microwave Luneburg lens made of gradient index metamaterials. J Opt Soc Am A 2012; 29(4): 426-430. DOI: 10.1364/JOSAA.29.000426.
  • Ruiz-Garcia J, Martini E, Giovampaola CD, González-Ovejero D, Maci S. Reflecting Luneburg lenses. IEEE Trans Antennas Propag 2021; 69(7): 3924-3935. DOI: 10.1109/TAP.2020.3044668.
  • Bahr RA, Adeyeye AO, Van Rijs S, Tentzeris MM. 3D-Printed omnidirectional Luneburg lens retroreflectors for low-cost mm-wave positioning. 2020 IEEE Int Conf on RFID (RFID) 2020: 1-7. DOI: 10.1109/RFID49298.2020.9244891.
  • Ansari M, Jones B, Guo YJ. Spherical Luneburg lens of layered structure with low anisotropy and low cost. IEEE Trans Antennas Propag 2022: 1-1. DOI: 10.1109/TAP.2022.3140509.
  • Biswas S, Lu A, Larimore Z, Parsons P, Good Au, Hudak N, Garrett B, Suarez J, Mirotznik MS. Realization of modified Luneburg lens antenna using quasi-conformal transformation optics and additive manufacturing. Microw Opt Technol Lett 2019; 61(4): 1022-1029. DOI: 10.1002/mop.31696.
  • Lu H, Liu Z, Liu Y, Ni H, Lv X. Compact air-filled Luneburg lens antennas based on almost-parallel plate waveguide loaded with equal-sized metallic posts. IEEE Trans Antennas Propag 2019; 67(11): 6829-6838. DOI: 10.1109/TAP.2019.2927862.
  • Kadéra P, Sánchez-Pastor J, Eskandari H, Tyc T, Sakaki M, Schüßler M, Jakoby R, Benson N, Jiménez-Sáez A, Lácík J. Wide-angle ceramic retroreflective Luneburg lens based on quasi-conformal transformation optics for mm-wave indoor localization. IEEE Access 2022; 10: 4109741111. DOI: 10.1109/ACCESS.2022.3166509.
  • Suzuki M, Hattori J. Gradient index lens. US Patent 4848882 of July 18, 1989.
  • Liang R, Kessler D. Monocentric autostereoscopic optical apparatus with a spherical gradient index ball lens. US Patent 6940645B2 of September 06, 2005.
  • Handerek VA, Laycock LC. Retroreflective device comprising gradient index lenses. US Patent 7170688B2 of January 30, 2007.
  • Koike Y, Kanemitsu A, Shioda Y, Nihei E, Ohtsuka Y. Spherical gradient-index polymer lens with low spherical aberration. Appl Opt 1994; 33(16): 3394-3400. DOI: 10.1364/A0.33.003394.
  • Singer W, Testorf M, Brenner K-H. Gradient-index micro-lenses: numerical investigation of different spherical index profiles with the wave propagation method. Appl Opt 1995; 34(13): 2165-2171. DOI: 10.1364/AO.34.002165
  • Yi Y, Zhang Y, Ru X, Dong L. The manufacture of polymer gradient refractive index spherical microlens. Acta Photonica Sinica 2003; 32(4): 425-428. DOI: 10.1023/A:1022289509702.
  • Bukhbinder TL, Dremina EA, Kosyakov VI, Moryganov AN, Tukhvatulin ASh. Basic rules for the formation of a refractive index profile in planar polymer structures. Tech Phys 1997; 42(4): 399-402.
  • Ji S, Yin K, Mackey M, Brister A, Ponting M, Baer E. Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses. Opt Eng 2013; 52(11): 112105. DOI: 10.1117/1 .OE.52.11.112105.
  • Sasan K, Lange A, Yee TD, Dudukovic N, Nguyen DT, Johnson MA, Herrera OD, Yoo JH, Sawvel AM, Ellis ME, Mah CM, Ryerson R, Wong LL, Suratwala T, Destino JF, Dylla-Spears R. Additive manufacturing of optical quality germania-silica glasses. ACS Appl Mater Interfaces 2020; 12(5): 6736-6741. DOI: 10.1021/acsami.9b21136.
  • Cooperstein I, Shukrun E, Press O, Kamyshny A, Magdassi S. Additive manufacturing of transparent silica glass from solutions. ACS Appl Mater Interfaces 2018; 10(22): 18879-18885. DOI: 10.1021/acsami.8b03766.
  • Assefa BG, Pekkarinen M, Partanen H, Biskop J, Turunen J, Saarinen J. Imaging-quality 3D-printed centimeter-scale lens. Opt Express 2019; 27(9): 12630-12637. DOI: 10.1364/0E.27.012630.
  • Dylla-Spears R, Yee TD, Sasan K, Nguyen DT, Dudukovic NA., Ortega JM, Johnson MA, Herrera OD, Ryerson FJ, Wong LL. 3D printed gradient index glass optics. Sci Adv 2020; 6(47): eabc7429. DOI: 10.1126/sciadv.abc7429.
  • Kotsidas P, Modi V, Gordon JM. Gradient- index lenses for near-ideal imaging and concentration with realistic materials. Opt Express 2011; 19(16): 15584-15595. DOI: 10.1364/OE.19.015584.
  • Kotsidas P, Modi V, Gordon JM. Gradient-index lenses for near-ideal imaging and concentration with realistic materials: errata. Opt Express 2012; 20(1): 338-338. DOI: 10.1364/OE.20.000338
  • Gross H (ed.), Zügge H, Peschka M, Blechinger F. Handbook of optical systems. Vol 3: Aberration theory and correction of optical systems. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA; 2007.
  • GOST 7427-76. Geometrical optics. Terms, definitions and letter symbols [In Russian]. Moscow: USSR State Committee on Standards; 1988.
  • Krylov VI. Approximate calculation of integrals. Dover Publications Inc; 2005.
  • ZEMAX optical design program: Users guide. Zemax Development Corporation; 2010.
  • Smith W. Modern optical engineering. 4th ed. McGraw-Hill; 2007.
Еще
Статья научная