Установление минимальных температурных и временных порогов образования ферритов-шпинелей CuFe2O4, NiFe2O4, CoFe2O4, ZnFe2O4 для методов твердофазного и жидкофазного синтеза
Автор: Зирник Глеб Михайлович, Чернуха Александр Сергеевич, Некорыснова Надежда Сергеевна, Вепрева Анастасия Владимировна, Матвеев Константин Витальевич, Смолякова Ксения Романовна, Винник Денис Александрович
Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry
Рубрика: Физическая химия
Статья в выпуске: 4 т.14, 2022 года.
Бесплатный доступ
Определение минимальных температурных и временных порогов образования гомогенных образцов ферритных материалов для разных методов интересно с той точки зрения, что финальная температура ферритизации, а также время выдержки влияет на конечный размер частиц. С уменьшением температуры ферритизации и времени выдержки также снижается конечный размер частиц получаемого материала. Для гетерогенных катализаторов это является важным параметром, так как чем меньше размер частиц катализатора, тем выше его каталитическая активность. В статье исследованы керамический, золь-гель (цитратный) метод, метод соосаждения и гидротермальный метод на примере получения СuFe2O4, CoFe2O4, NiFe2O4, ZnFe2O4. Экспериментально определены нижние температурные пороги образования ферритных фаз для керамического, золь-гель (цитратного), гидротермального метода и метода соосаждения на примере получения CuFe2O4, NiFe2O4, СoFe2O4, ZnFe2O4. Температурный порог образования уменьшается в ряду: керамический метод (1000-1100 °С), метод соосаждения (400-800 °С), гидротермальный метод (180 °С), золь-гель (цитратный) метод (150-300 °С); при этом для каждого из методов выдержка может составлять от нескольких часов до суток. Используя данные порошковых дифрактограмм, методом полнопрофильного анализа по Ритвельду установлены параметры решетки для всей линейки образцов. Для СuFe2O4, полученного керамическим методом: a = 8,376 Å, V = 587,74 Å3; золь-гель (цитратным) методом: a = 8,270, V = 565,63 Å3; методом соосаждения: a = 8,392, V = 590,90 Å3; гидротермальным методом: a = 8,278, V = 567,24 Å3. Для СoFe2O4, полученного керамическим методом: a = 8,385, V = 598,49 Å3; золь-гель (цитратным) методом: a = 8,353, V = 582,82 Å3; методом соосаждения: a = 8,378, V = 588,04 Å3; гидротермальным методом: a = 8,393, V = 591,31 Å3. Для NiFe2O4, полученного керамическим методом: a = 8,338, V = 579,59 Å3; золь-гель (цитратным) методом: a = 8,357, V = 583,49 Å3; методом соосаждения: a = 8,347, V = 581,40 Å3; гидротермальным методом: a = 8,351, V = 582,38 Å3. Для ZnFe2O4, полученного керамическим методом: a = 8,439, V = 600,97Å3; золь-гель (цитратным) методом: a = 8,439, V = 8,439 Å3; методом соосаждения: a = 8,440, V = 601,10 Å3; гидротермальным методом: a = 8,453, V = 604,02 Å3.
Ферриты-шпинели, гетерогенные катализаторы, твердофазный синтез, золь-гель (цитратный) синтез, метод соосаждения, гидротермальный синтез, температурный порог образования, снижение размера частиц
Короткий адрес: https://sciup.org/147239531
IDR: 147239531 | DOI: 10.14529/chem220412
Список литературы Установление минимальных температурных и временных порогов образования ферритов-шпинелей CuFe2O4, NiFe2O4, CoFe2O4, ZnFe2O4 для методов твердофазного и жидкофазного синтеза
- Brockman F.G., Dowling P.H., Steneck W.G. Dimensional effects resulting from a high dielectric constant found in a ferromagnetic ferrite. Phys. Rev. 1950;77(1):85-93. DOI: 10.1103/PhysRev.77.85
- Vinnik D.A., Sherstyuk D.P., Zhivulin V.E., Zhivulin D.E. Impact of the Zn-Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceram. Int. 2022;48(13): 18124-18133. DOI: 10.1016/j.ceramint.2022.03.070
- Pardavi-Horvath M. Microwave applications of soft ferrites. J. Magn. Magn. Mater. 2000;215:171-183. DOI: 10.1016/S0304-8853(00)00106-2
- Meshrama M.R., Agrawala N.K., Sinhaa B., Misra P.S. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 2004;271(2-3):207-214. DOI: 10.1016/j.jmmm.2003.09.045
- Mohsen Q. Factors affecting the synthesis and formation of single-phase barium hexaferrite by a technique of oxalate precursor. Am. J. Appl. Sci. 2010;7(7):901-908. DOI: 10.3844/ajassp.2010.914.921
- Kubo O., Ido T., Yokoyama H. Properties of Ba ferrite particles for perpendicular magnetic recording media. IEEE Trans. Magn. 1982;18(6):1122-1124. DOI: 10.1109/TMAG.1982.1062007
- Fairweather A., Roberts F.F., Welch A.J.E. Ferrites. Rep. Prog. Phys. 2019;15:142.
- Carol Trudel T.T., Mohammed J., Hafeez H.Y., Bhat.Structural B.H. Dielectric, and magneto-optical properties of Al-Cr substituted M-type barium hexaferrite. Phys. Status Solidi Appl. Mater. Sci. 2019;216(16):1-9. DOI: 10.1002/pssa.201800928
- Smolenskij G.A., Lemanov V.V. Ferrity i ikh tekhnicheskoe primenenie. [Ferrites and their technical applications]. Leningrad, Nauka. 1975:219.
- Belov K.P., Kadomtseva A.M. Magnetoelastic properties of rare-earth orthoferrites. Sov. Phys. Usp. 1971 ;14(2): 154-162. DOI: 10.1070/PU1971v014n02ABEH004455
- Meng W., Li F., Evans D.G., Duan X. Photocatalytic activity of highly porous zinc ferrite prepared from a zinc-iron (III)-sulfate layered double hydroxide precursor. J. Porous Mater. 2004;11(2):97-105. DOI: 10.1023/B:JOPO.0000027365.89103.f1
- Chung Y.S., Bin P.S., Kang D.W. Magnetically separable titania-coated nickel ferrite photocatalyst.Mater. Chem. Phys. 2004;86(2-3):375-381. DOI: 10.1016/j.matchemphys.2004.03.027
- Padmapriya G., Manikandan A., Krishnasamy V., Jaganathan S.K. Spinel NixZni.xFe2O4 (0.0 < x < 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 2016;1119:39-47. DOI: 10.1016/j.molstruc.2016.04.049
- Kim H.G., Borse P.H., Jang J.S., Jeong E.D. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem. Commun. 2009;39:5889-5891. DOI: 10.1039/b911805e
- Zhang S., Zhao X., Niu H., Shi Y. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J. Hazard. Mater. 2009;167(1-3):560-566. DOI: 10.1016/j.jhazmat.2009.01.024
- Guan Y.H., Ma J., Ren Y.M., Liu Y.L. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res. 2013;47(14):5431-5438. DOI: 10.1016/j.watres.2013.06.023
- Ren Y., Lin L., Ma J., Yang J. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl. Catal. B Environ. 2015;165:572-578. DOI: 10.1016/j.apcatb.2014.10.051
- Gul I.H., Ahmed W., Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 2008;320(3-4):270-275. DOI: 10.1016/j.jmmm.2007.05.032
- Tijare S.N., Joshi M.V., Padole P.S., Mangrulkar P.A. Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int. J. Hydrogen Energy. 2012;37(13): 10451-10456. DOI: 10.1016/j.ijhydene.2012.01.120
- Li S., Lin Y.H., Zhang B.P., Wang Y. Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C. 2010;114(7):2903-2908. DOI: 10.1021/jp910401u
- Thirumalairajan S., Girija K., Hebalkar N.Y., Mangalaraj D. Shape evolution of perovskite LaFeO3 nanostructures: A systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities. RSC Adv. 2013;3(20):7549-7561. DOI: 10.1039/c3ra00006k
- Feng Y.N., Wang H.C., Luo Y.D., Shen Y. Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres. J. Appl. Phys. 2013;113(14):3-6. DOI: 10.1063/1.4801796
- Mohan S., Subramanian B., Bhaumik I., Gupta P.K. Nanostructured Bi(i_x)Gd(x)FeO3_a multiferroic photocatalyst on its sunlight driven photocatalytic activity. RSC Adv. 2014;4(32):16871-16878. DOI: 10.1039/c4ra00137k
- Tang P., Chen H., Cao F., Pan G. Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts. Catal. Sci. Technol. 2011;1(7): 1145-1148. DOI: 10.1039/c1cy00199j
- Dandia A., Jain A.K., Sharma S. CuFe2O4 nanoparticles as a highly efficient and magnetically recoverable catalyst for the synthesis of medicinally privileged spiropyrimidine scaffolds. RSC Adv. 2013;3(9):2924-2934. DOI: 10.1039/c2ra22477a
- Tamaddon F., Amirpoor F. Improved catalyst-free synthesis of pyrrole derivatives in aqueous media. Synlett. 2013;24(14): 1791-1794. DOI: 10.1055/s-0033-1339294
- Yang S., Xie W., Zhou H., Wu C. Alkoxylation reactions of aryl halides catalyzed by magnetic copper ferrite. Tetrahedron. 2013;69(16):3415-3418. DOI: 10.1016/j.tet.2013.02.077
- Nguyen A.T., Pham L.T., Phan N.T.S., Truong T. Efficient and robust superparamagnetic copper ferrite nanoparticle-catalyzed sequential methylation and C-H activation: Aldehyde-free propargylamine synthesis. Catal. Sci. Technol. Royal Society of Chemistry. 2014;4(12):4281-4288. DOI: 10.1039/c4cy00753k
- Nguyen A.T., Nguyen L.T.M., Nguyen C.K., Truong T. Superparamagnetic copper ferrite nanoparticles as an efficient heterogeneous catalyst for the a-arylation of 1,3-diketones with C-C cleavage. ChemCatChem. 2014;6(3):815-823. DOI: 10.1002/cctc.201300708
- Gon?alves A., Mares M.K.L., Zamian E.R., Filho J.N. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel. 2021;304:121463. DOI: 10.1016/j.fuel.2021.121463
- Da Silva A.L., Farias A.F.F., Pontes J.R.M., Rodrigues A.M. Synthesis of the ZnO-Ni0.5Zna5Fe2O4-Fe2O3 magnetic catalyst in pilot-scale by combustion reaction and its application on the biodiesel production process from oil residual. Arab. J. Chem. KingSaud University. 2020;13(11):7665-7679. DOI: 10.1016/j.arabjc.2020.09.003
- Ashok A., Ratnaji T., Kennedy L.J., Vijaya J.J. Magnetically recoverable Mg substituted zinc ferrite nanocatalyst for biodiesel production: Process optimization, kinetic and thermodynamic analysis. Renew. Energy. Elsevier Ltd. 2021;163:480-494. DOI: 10.1016/j.renene.2020.08.081
- Sainz M.A., Mazzoni A.D., Aglietti E.F., Caballero A. Thermochemical stability of spinel (MgOAl2O3) under strong reducing conditions. Mater. Chem. Phys. 2004;86(2-3):399-408. DOI: 10.1016/j.matchemphys.2004.04.007
- Liu G.Q., Wen L., Wang X., Ma B.Y. Effect of the impurity LixNii_xO on the electrochemical properties of 5V cathode material LiNi0.5Mn1.5O4. J. Alloys Compd. 2011;509(38):9377-9381. DOI: 10.1016/j.jallcom.2011.07.045
- Zhao Q., Feng G., Jiang F., Lan S. Comparison of Fe2TiO5/C photocatalysts synthesized: Via a nonhydrolytic sol-gel method and solid-state reaction method. RSC Adv. Royal Society of Chemistry. 2020;10(71):43762-43772. DOI: 10.1039/d0ra07884k
- Fan L., Zheng H., Zhou X., Zhang H. A comparative study of microstructure, magnetic, and electromagnetic properties of Zn2W hexaferrite prepared by sol-gel and solid-state reaction methods. J. Sol-Gel Sci. Technol. Springer US. 2020;96(3):604-613. DOI: 10.1007/s10971-020-05364-2
- Kaykan L., Sijo A.K., Zywczak A., Mazurenko J. Tailoring of structural and magnetic properties of nanosized lithium ferrites synthesized by sol-gel self-combustion method. Appl. Nanosci. Springer International Publishing. 2020;10(12):4577-4583. DOI: 10.1007/s13204-020-01413-y
- Naamoune F., Messaoudi B., Kahoul A., Cherchour N. A new sol-gel synthesis of Mn3O4 oxide and its electrochemical behavior in alkaline medium. Ionics (Kiel). 2012;18(4):365-370. DOI: 10.1007/s11581-011-0621-8
- Singh, R.N. Pandey J. P., Singh N.K., Lal B. Sol-gel derived spinel MxCo3_xO4 (M = Ni, Cu; 0 < x < 1) films and oxygen evolution. Electrochim. Acta. 2000;45(12): 1911-1919. DOI: 10.1016/S0013-4686(99)00413-2
- Dutta S.K., Akhter M., Ahmed J., Amin M.K. Synthesis and catalytic activity of spinel ferrites: A brief review. Biointerface Res. Appl. Chem. 2021;12(4):4399-4416. DOI: 10.33263/BRIAC124.43994416
- Khalid N.R., Nadeem Y., Muhammad B.T., Zainab I. Facile hydrothermal synthesis of 3D flower-like La-MoS2 nanostructure for photocatalytic hydrogen energy production. Int. J. Energy Res. 2019;43(1):491-499. DOI: 10.1002/er.4286
- Araujo C., Almeida B.G., Aguiar M., Mendes J.A. Structural and magnetic properties of CoFe2O4 thin films deposited by laser ablation on Si (001) substrates. Vacuum. 2008;82(12): 1437-1440. DOI: 10.1016/j.vacuum.2008.03.014
- Parmar S., Biswas A., Sachin K.S., Ray B. Coexisting 1T/2H polymorphs, reentrant resistivity behavior, and charge distribution in MoS2-hBN 2D/2D composite thin films. Phys. Rev. Mater. 2019;3(7). DOI: 10.1103/PhysRevMaterials.3.074007
- Serrar H. Effect of water and methanol solvents on the properties of CuO thin films deposited by spray pyrolysis. Thin Solid Films. 2019;686:1-27. DOI: 10.1016/j.tsf.2019.05.001
- Patil P.S. Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. 1999;59(3): 185-198. DOI: 10.1016/S0254-0584(99)00049-8
- Park J. Chemical Vapour Deposition of Polymers: Principles, Materials and Applications. Chemical Vapour Deposition: Surface Engineering Series Volume 2. 2001;2:243-246.
- Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov: Uchebnoe posobie [Powder technology of self-propagating high-temperature synthesis of materials: Tutorial] Moscow, Mashinostroenie-1. 2007:471.
- Al-Mamun M., Su X., Zhang H., Yin H. Strongly coupled CoCr2OVcarbon nanosheets as high performance electrocatalysts for oxygen evolution reaction. Small. 2016;12(21):2866-2871. DOI: 10.1002/smll.201600549
- Qiu F., Wang Z., Liu M., Wang Z. Synthesis, characterization and microwave absorption of MXene/NiFe2O4 composites. Ceram. Int. 2021;47(17):24713-24720. DOI: 10.1016/j.ceramint.2021.05.194
- Gao X., Bi J., Wang W., Liu H. Morphology-controllable synthesis of NiFe2O4 growing on graphene nanosheets as advanced electrode material for high performance supercapacitors. J. Alloys Compd. 2020;826:154088. DOI: 10.1016/j.jallcom.2020.154088
- Ayyappan S., Paneerselvam G., Antony M.P., Philip J. Structural stability of ZnFe2O4 nanoparticles under different annealing conditions. Mater. Chem. Phys. 2011;128(3):400-404. DOI: 10.1016/j.matchemphys.2011.03.012
- Lei W., Nie L., Liu S., Zhuo Y. Influence of annealing temperature on microstructure and lithium storage performance of self-templated CuxCo3_xO4 hollow microspheres. RSC Adv. 2016;6(67):62640-62646. DOI: 10.1039/c6ra10215h
- Shukla A., Bhardwaj A.K., Singh S.C., Uttam K.N. Microwave assisted scalable synthesis of titanium ferrite nanomaterials. J. Appl. Phys. 2018;123(16):161411. DOI: 10.1063/1.5008733
- Cady C.W. Tuning the electrocatalytic water oxidation properties of AB2O4 spinel nanocrystals: A (Li, Mg, Zn) and B (Mn, Co) site variants of LiMn2O4. ACS Catal. 2015;5(6):3403-3410. DOI: 10.1021/acscatal.5b00265
- Mellsop S.R., Gardiner A., Marshall A.T. Electrocatalytic Oxygen Evolution on Electrochemically Deposited Cobalt Oxide Films: Comparison with Thermally Deposited Films and Effect of Thermal Treatment. Electrocatalysis. 2014;5(4):445-455. DOI: 10.1007/s12678-014-0212-3
- Garg N., Menaka, Ramanujachary K.V., Lofland S.E. Nanostructured dimagnesium manganese oxide (Spinel): Control of size, shape and their magnetic and electro catalytic properties. J. Solid State Chem. Elsevier. 2013;197:392-397. DOI: 10.1016/j.jssc.2012.08.063
- Sun S., Zeng H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002;124(28):8204-8205. DOI: 10.1021/ja026501x
- Arzamasov B.N., Makarova V.I., Muhin G.G. Materialovedenie: Uchebnik dlya vuzov. 8-e izd. [Materials Science: Textbook for universities. 8th ed.]. Moscow, BMSTU, 2008. 648 p.
- Khort A., Hedberg J., Mei N., Romanovski V. Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter. Sci. Rep. Nature Publishing Group UK. 2021;11(1):1-14. DOI: 10.1038/s41598-021-87250-7
- Swanson H.E., McMurdie H.F., Morris M.C., Evans E.H., Paretzkin B. Standard X-ray diffraction powder patterns Section 9 - Data for 63 Substances. Monogr. 25. Nat. Bur. Stand. (U.S.). 1971;9:22.
- Hastings J.M., Corliss L.M. Neutron diffraction studies of zinc ferrite and nickel ferrite. Rev. Mod. Phys. 1953;25(1): 114-119. DOI: 10.1103/RevModPhys.25.114
- Verwey E.J.W., Heilmann E.L. Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J. Chem. Phys. 1947;15(4): 174-180. DOI: 10.1063/1.1746464
- Morris M.C., McMurdie H.F., Evans E.H., Paretzkin Z., Parker H.S., Pyrros N.P. Standard X-ray Diffraction Powder Patterns Section 20 - Data for 71 Substances. Monogr. 25. Natl. Bur. Stand. (U.S.) 1983;20:47.
- Brese N.E., O'Keeffe M., Ramakrishna B.L., Von Dreele R.B. Low-tempetature structure of CuO and AgO and their relationships to those of MgO and PbO. J. Solid State Chem. 1990;89:184. DOI: 10.1016/0022-4596(90)90310-T
- Morris M.C., McMurdie H.F., Evans E.H., Paretzkin B., Parker H.S., Panagiotopoulos N.C. Standard X-ray diffraction powder patterns section 18 — Data for 58 Substances. Monogr. 25. Natl. Bur. Stand. (U.S.) 1981;18:37.
- Subramanyam, K.N. Neutron and X-ray diffraction studies of certain doped nickel ferrites. J. Phys. C: Solid State Phys. 1971;4(15):2266. DOI: 10.1088/0022-3719/4/15/012
- Cairns R.W., Ott E. X-Ray studies of the system nickel-oxygen-water. I. Nickelous oxide and hydroxide. J. Am. Chem. Soc. 1933;55(2):527-533. DOI: 10.1021/ja01329a013
- Swanson H.E., McMurdie H.F., Morris M.C., Evans E.H., Paretzkin B. Standard X-ray diffraction powder patterns Section 9 - Data for 63 Substances. Monogr. 25. Nat. Bur. Stand. (U.S.). 1971;9:22.
- Schmahl N.G., Eikerling G.F.Z. Über kryptomodifikationen des Cu(II)-oxids. Phys. Chem. Neue Folge. (Wiesbaden). 1968;62:268-279. DOI: 10.1524/zpch.1968.62.5_6.268
- Waerenborgh J.C., Figueiredo M.O., Cabral J.M.P., Pereira L.C.J. Temperature and composition dependence of the cation distribution in synthetic ZnFeyAl2_yO4 (0 < y < 1) Spinels. J. Solid State Chem. 1994; 111(2):300-309. DOI:10.1006/jssc.1994.1231