Устойчивость коллекционных штаммов родококков к воздействию экотоксиканта - этоксилированного нонилфенола
Автор: Баяндина Е.А., Поздеева А.В., Куюкина М.С., Ившина И.Б.
Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio
Рубрика: Микробиология
Статья в выпуске: 4, 2023 года.
Бесплатный доступ
Этоксилированный нонилфенол (ЭНФ) - широко применяемый поверхностно-активный агент, относящийся к наиболее распространенным ксеноэстрогенам - гормоноподобным ксенобиотикам, накопление которых в окружающей среде оказывает негативное воздействие на эндокринную систему животных и человека, повышая тем самым уровень экологического риска. Естественные процессы биодеградации ЭНФ затруднены вследствие его высокой токсичности для водных и почвенных микроорганизмов, что требует поиска устойчивых штаммов-биодеструкторов данного экополлютанта. В работе выполнен скрининг 50 штаммов актинобактерий рода Rhodococcus из Региональной профилированной коллекции алканотрофных микроорганизмов (акроним ИЭГМ, http://www.iegmcol.ru) по устойчивости к ЭНФ и изучено воздействие ксенобиотика на динамику формирования биопленок родококков. Отобраны устойчивые к высоким (МИК > 125 г/л) концентрациям ЭНФ штаммы R. ruber ИЭГМ 615, ИЭГМ 1263, R. rhodochrous ИЭГМ 655, выделенные из нефтезагрязненных экосистем. Показано, что длительное (до 72 ч.) культивирование биопленок R. ruber ИЭГМ 71 в присутствии 15 г/л ЭНФ способствовало увеличению адгезивной активности клеток и синтезу экзополимерного матрикса, играющего основную роль в защите бактерий от токсичного воздействия ЭНФ. Полученные данные раскрывают потенциал родококков для детоксикации ксеноэстрогенов из группы алкилированных фенолов, что может быть использовано при разработке биотехнологических методов очистки окружающей среды от данных экотоксикантов.
Биоремедиация, этоксилированный нонилфенол, устойчивость, минимальная ингибирующая концентрация, биопленки, клсм
Короткий адрес: https://sciup.org/147242767
IDR: 147242767 | DOI: 10.17072/1994-9952-2023-4-337-348
Список литературы Устойчивость коллекционных штаммов родококков к воздействию экотоксиканта - этоксилированного нонилфенола
- Ivshina I.B., Kamenskih T.N., Lyapunov Ya.E. Katalog štammov Regional’noj profiirovannoj kollekcii a;anottrofnych mikroorganizmov [Catalogue of strains of the Regional profiled collection of alkanotrophic mi-croorganisms]. Moscow, Nauka Publ., 1994. 163 p. (In Russ.).
- Ivshina I.B., Kuyukina M.S., Kostina L.V. [Adaptive mechanisms of nonspecific resistance of alka-notrophic actinobacteria to heavy metal ions]. Èkologija. Iss. 2 (2013): pp. 115-123. (In Russ.).
- Ivshina I.B., Kuyukina M.S., Kamenskih T.N.,Krivoruchko A.V., Tyumina E.A., Elkin A.A. Uglevo-dorodokisljajuščie rodokokki [Hydrocarbon-oxidizing rhodococci: features of biological organization under the influence of eco-pollutants]. Perm, 2021. 139 p. (In Russ.).
- Kuzikova I.L., Zaytseva T.B., Kichko A.A., Zinoveva S.V., Russu A.D., Mayachkina N.V., Medvedeva N.G. [Effect of nonylphenols on the abundance and taxonomic structure of the soil microbial community]. Počvovedenie. No. 6 (2019): pp. 722-733. (In Russ.).
- Kuyukina M.S., Ivshina I.B., Rychkova M.I., Chumakov O.B. [Effect of the cell lipid composition on the formation of nonspecific antibiotic resistance in alkanotrophic rhodococci]. Mikrobiologija. V. 69, No. 1 (2000): pp. 62-69. (In Russ.).
- Ademollo N., Patrolecco L., Rauseo J., Nielsen J., Corsolini S., Bioaccumulation of nonylphenols and bi-sphenol A in the Greenland shark Somniosus microcephalus from the Greenland seawaters. Microchemical Journal. V. 136 (2018): pp. 106-112.
- Bayandina E.A., Glebov G.G., Kuyukina M.S., Ivshina I.B. Resistance of Rhodococcus ruber biofilms to CuO nanoparticles depending on exopolymer matrix composition. Acta Biomedica Scientifica. V. 7(5‒1) (2022): pp. 100-109.
- Buitrón G., Torres-Bojorges A.X., Cea-Barcia G. Removal of p-nonylphenol isomers using nitrifying sludge in a membrane sequencing batch reactor. Chemical Engineering Journal. V. 281 (2015): pp. 860-868.
- Cladière M., Bonhomme C., Vilmin L., Gasperi J., Flipo N., Tassin B. Modelling the fate of nonylphenolic compounds in the Seine River — part 1: Determination of in-situ attenuation rate constants. Science of the To-tal Environment. V. 468-469 (2014): pp. 1050-1058.
- Corvini P., Vinken R., Hommes G, Schmidt D., Dohmann M. Degradation of the Radioactive and Non-labelled Branched 4(3',5'-dimethyl 3'-heptyl)-phenol Nonylphenol Isomer by Sphingomonas TTNP3. Biodegra-dation. V. 15 (2004): pp. 9-18.
- Dong R., Hao J. Complex fluids of poly(oxyethylene) monoalkyl ether nonionic surfactants. Chemical Reviews. V. 110 (2010): pp. 4978-5022.
- Eganhouse R.P., Pontolillo J., Gaines R.B., Frysinger G.S., Gabriel, F.L.P., Kohler H.-P.E., Giger W., Barber L.B. Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatog-raphy/time-of-flight mass spectrometry. Environmental Science & Technology. V. 43 (24) (2009): pp. 9306-9313.
- Ferguson P.L., Bopp R.F., Chillrud S.N., Aller R.C., Brownawell B.J. Biogeochemistry of nonylphenol eth-oxylates in urban estuarine sediments. Environmental Science & Technology. V. 37 (2003): pp. 3499-3506.
- Ferrer-Polonio E., Fernández-Navarro J., Mendoza-Roca J.A., Bes-Piá A., Alonso-Molina J.L., Effect of 4-nonylphenol on the performance and microbial community of a sequencing batch reactor. Journal of Envi-ronmental Chemical Engineering. V. 10, No. 2 (2022): p. 107249.
- Flemming H.C, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nature Re-views Microbiology. V. 17 (2019): pp. 247-260.
- Fucic A., Gamulin M., Ferencic Z., Katic J., Krayer von Krauss M., Bartonova A., Merlo D.F. Environ-mental exposure to xenoestrogens and oestrogen related cancers: reproductive system, breast, lung, kidney, pancreas, and brain. Environmental Health. V. 11 (2012): Article S8.
- Hoostal M.J., Bidart-Bouzat M.G., Bouzat J.L. Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie. FEMS Microbiology Ecology. V. 65 (2008): pp. 156-168.
- Ivshina I.B., Richkova M.I. Mukhutdinova A.N., Karpenko Ju.N. Biodegradation of drotaverine hydro-chloride by free and immobilized cells of Rhodococcus rhodochrous IEGM 608. World Journal of Microbiolo-gy and Biotechnology. V. 28, No. 10 (2012): pp. 2997-3006.
- Ivshina I.B., Kuyukina M.S., Krivoruchko A.V., Plekhov O.A., Naimark O.B., Podorozhko E.A., Lozinsky V.I. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust. Applied Microbiology and Biotechnology. V. 97 (2013): pp. 5315-5327.
- Kim D., Kwak J.I., An Y.-J. Physiological response of crop plants to the endocrine-disrupting chemical nonylphenol in the soil environment. Environmental Pollution. V. 251 (2019): pp. 573-580.
- Korsman J.C., Schipper A.M., de Vos M.G, van den Heuvel-Greve M.J., Vethaak A.D., de Voogt P., Hen-driks A.J. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine–marine food chains. Chemosphere. V. 138 (2015): pp. 33-39.
- Kovalchuk O., Tryndyak V.P., Montgomery B., Boyko A., Kutanzi K., Zemp F., Warbritton A.R., Laten-dresse J.R, Kovalchuk I., Beland F.A., Pogribny I.P. Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications, and aberrant microRNA expression. Cell Cycle. V. 6, No. 16 (2007): pp. 2010-2018.
- Krivoruchko A.V., Kuyukina M.S., Ivshina I.B. Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts. V. 9 (2019): pp. 1-19.
- Lara-Moreno A., Aguilar-Romero I., Rubio-Bellido M., Madrid F., Villaverde J., Santos J.L., Alonso E., Morillo E. Novel nonylphenol-degrading bacterial strains isolated from sewage sludge: Application in bioremedi-ation of sludge. Science of the Total Environment. V. 847 (2022): Article 157647.
- Lu Z., Gan J. Analysis, toxicity, occurrence and biodegradation of nonylphenol isomers. Environment In-ternational. V. 73 (2014): pp. 334-345.
- Materna K., Milosz I., Miesiac I., Cote G., Szymanowski J. Removal of phenols from aqueous streams by the cloud point extraction technique with oxyethylated methyl dodecanoates as surfactants. Environmental Science & Technology. V 35 (2001): pp. 2341-2346.
- Nazari M.T., Simon V., Strieder Machado B., Crestani L., Marchezi G., Concolato G., Ferrari V., Colla L.M., Piccin J.S. Rhodococcus: A promising genus of actinomycetes for the bioremediation of organic and inor-ganic contaminants. Journal of Environmental Management. V. 323 (2022): Article 116220.
- Negin C., Ali S., Xie Q. Most common surfactants employed in chemical enhanced oil recovery. Petrole-um. V. 3 (2017): pp. 197-211.
- Peng C., Zhou S., Zhang Y., Zhang H., Zhang W., Ling S., Hu S. Dynamics and mechanisms of bioaccu-mulation and elimination of nonylphenol in zebrafish. Toxicology. V. 483 (2023): Article 153375.
- Petrick J.L., McMenamin U.C., Zhang X., Zeleniuch-Jacquotte A., Wactawski-Wende J., Simon T.G., Sin-ha R., Sesso H.D., Schairer C., Rosenberg L., Rohan T.E., Robien K., Purdue M.P., Poynter J.N, Palmer J R, Lu Y., Linet M.S., Liao L.M., Lee I-M., Koshiol J., Kitahara C.M., Kirsh V.A., Hofmann J.N., Graubard B.I., Gio-vannucci E., Gaziano J.M., Gapstur S.M., Freedman N.D., Florio A.A., Chong D.Q., Chen Y., Chan A.T., Buring J.E., Beane Freeman L.E., Bea J.W, Cardwell C.R., Campbell P.T., McGlynn K.A. Exogenous hormone use, re-productive factors and risk of intrahepatic cholangiocarcinoma among women: results from cohort studies in the Liver Cancer Pooling Project and the UK Biobank. British Journal of Cancer. V. 123 (2020): pp. 316-324.
- Priac A., Morin-Crini N., Druart C., Gavoille S., Bradu C., Lagarrigue C., Torri G., Winterton P., Crini G. Alkylphenol and alkylphenol polyethoxylates in water and wastewater. Arabian Journal of Chemistry. V. 10 (2017): pp. S3749‒S3773.
- Quina F.H., Hinze W.L. Surfactant-mediated cloud point extractions. Industrial & Engineering Chemis-try Research. V. 38 (1999): pp. 4150-4168.
- Różalska S., Soboń A., Pawłowska J., Wrzosek M., Długoński J. Biodegradation of nonylphenol by a novel entomopathogenic Metarhizium robertsii strain. Bioresource technology. V. 191 (2015): pp. 166-172.
- Ruiz Y., Medina L., Borusiak M., Ramos N., Pinto G., & Valbuena O. Biodegradation of polyethoxylated nonylphenols. ISRN microbiology. (2013): Article 284950.
- Seralini G. E., Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors. Toxicology reports. V. 8 (2021): pp. 1538-1557.
- Shen C., Miao J., Li Y., Pan L. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae. Journal of Ocean University of China. V. 15 (2016): pp. 303-310.
- Soares A., Guieysse B., Delgado O., Mattiasson B. Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnology Letters. V. 25 (2003): pp. 731-738.
- Tian K., Meng Q., Li S., Chang M., Meng F., Yu Y., Li H., Qiu Q., Shao J., Huo H., Mechanism of 17β-estradiol degradation by Rhodococcus equi via the 4,5-seco pathway and its key genes. Environmental Pollu-tion. V. 312 (2022): 120021.
- Villemur R., Dos Santos S.C., Ouellette J., Juteau P., Lépine F., Déziel, E. Biodegradation of endocrine dis-ruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Applied and Environmental Mi-crobiology. V. 79(15) (2013): pp. 4701-4711.
- Wang Y. Degradation of 17β-estradiol and products by a mixed culture of Rhodococcus equi DSSKP-R-001 and Comamonas testosteroni QYY20150409. Biotechnology and Biotechnological Equipment. V. 33, No. 1 (2019): pp. 268-277.
- Watanabe W., Hori Y., Nishimura S., Takagi A., Kikuchi M., Sawai J. Bacterial Degradation and Reduc-tion in the Estrogen activity of 4-nonylphenol. Biocontrol Science. V. 17 (2012): pp. 143-147.
- White G. F. Bacterial biodegradation of ethoxylated surfactants. Pesticide Science. V. 37 (1993): pp. 159-166.
- Wilmaerts D., Windels E.M., Verstraeten N., Michiels J. General mechanisms leading to persister for-mation and awakening. Trends Genet. V. 35 (2019): pp. 401-411.
- Writer J., Joseph N.R., Larry J.B. Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams. Environmental Science & Technology. V. 45 (2011): pp. 7275-7283.
- Wu F.F., Qiu L.F. Kinetic study on the biodegradation of nonylphenol by Rhodotorula sp. Advanced Ma-terials Research. V. 233-235 (2011): pp. 575-578.
- Yuan S.Y., Yu C.H., Chang B.V. Biodegradation of nonylphenol in river sediment. Environmental Pollu-tion. V. 127 (2004): pp. 425-430.