Устранение колебаний твердого тела, подвешенного на тросе переменной длины, при управляемом горизонтальном перемещении подвеса

Бесплатный доступ

Рассмотрена задача пассивного силового (динамического) и кинематического управления передвижением тяжелого груза (недеформируемого твердого тела), подвешенного на нерастяжимом безынерционном тросе переменной длины с управляемым горизонтальным перемещением точки подвеса. Получены дифференциальные уравнения с переменными коэффициентами для малых поступательно-вращательных колебаний тела. Поставлена следующая задача: переместить тело из начального положения покоя в заданное конечное равновесное положение покоя за определенное время с устранением колебаний в момент остановки. При этом закон изменения длины троса считается заданным, а закон перемещения точки его подвеса - неизвестным. Установлены интегральные условия, которым должны удовлетворять искомые управляющие воздействия (сила или ускорение точки подвеса). Приближенное решение задачи кинематического управления, описываемой двумя дифференциальными уравнениями с переменными коэффициентами для углов поворота троса и тела, ищется в рядах с неизвестными коэффициентами по методу Бубнова-Галеркина с использованием заданных аппроксимирующих функций времени, удовлетворяющих некоторым начальным и конечным условиям. Ускорение точки подвеса троса ищется в виде ряда по синусам с неизвестными коэффициентами. Получается связанная система линейных алгебраических уравнений для всех неизвестных коэффициентов, в которую входят уравнения метода Бубнова-Галеркина, уравнения для невыполненных при выборе заданных функций начальных и конечных условий и одно уравнение, представляющее интегральное условие в виде зависимости ускорения точки подвеса троса от его заданного конечного перемещения. Предложенный подход для решения задачи финитного управления колебаниями системы с переменными параметрами является новым. На примерах системы с тросом постоянной и переменной длины выполнены расчеты с анализом сходимости и точности решений при двух различных наборах заданных функций и при различном их числе путем сравнения с численными решениями дифференциальных уравнений прямой задачи по методу Адамса при найденных законах управления.

Еще

Управление колебаниями, управляемые системы, маятники, манипуляционные роботы, подъемно-транспортные механизмы, мостовые краны, системы с переменными параметрами, колебания малые, терминальное управление, метод бубнова-галеркина

Короткий адрес: https://sciup.org/146281893

IDR: 146281893   |   DOI: 10.15593/perm.mech/2018.4.21

Список литературы Устранение колебаний твердого тела, подвешенного на тросе переменной длины, при управляемом горизонтальном перемещении подвеса

  • Черноусько Ф.Л., Болотник Н.Н., Градецкий В.Г. Манипуляционные роботы: динамика, управление, оптимизация. - М.: Наука, 1989. - 363 с.
  • Ковалева А.С. Управление колебательными и виброударными системами. - М.: Наука, 1990. - 256 с.
  • Расчет и проектирование систем разделения ступеней ракет / К.С. Колесников, В.В. Кокушкин, С.В. Борзых, Н.В. Пан-кова. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. - 376 с.
  • Dynamics and Control of Large Space Structures / G.S. Nurre, R.S. Ryan, H.N. Scofield, J.I. Sims // Journal of Guidance, Control and Dynamics. - 1984. - Vol. 7. - No. 5. - P. 514-526.
  • Дегтярев Г.Л., Сиразетдинов Т.К. Теоретические основы оптимального управления упругими космическими аппаратами. - М.: Машиностроение, 1986. - 216 с.
Статья научная