УСТРОЙСТВА POINT-OF-CARE (POC): КЛАССИФИКАЦИЯ И ОСНОВНЫЕ ТРЕБОВАНИЯ

Автор: А. Н. Зубик, Г. Е. Рудницкая, А. А. Евстрапов, Т. А. Лукашенко

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Обзоры

Статья в выпуске: 3 т.32, 2022 года.

Бесплатный доступ

В обзоре представлена классификация устройств point-of-care (POC), обсуждены основные характеристики устройств и требования, предъявляемые к ним. Рассмотрены различия между методом POC-тестирования и лабораторным методом анализа. Приведены примеры устройств, подходящих под определение POC для диагностики инфекционных заболеваний.

Point-of-care (POC), lab-on-chip (LOC), lab-on-а-disc (LOAD), микрофлюидика, микрофлюидный чип, тест-полоска, тест-полоска латерального потока (LFA), микрофлюидное бумажное аналитическое устройство (μPAD)

Короткий адрес: https://sciup.org/142234688

IDR: 142234688   |   DOI: 10.18358/np-32-3-i329

Список литературы УСТРОЙСТВА POINT-OF-CARE (POC): КЛАССИФИКАЦИЯ И ОСНОВНЫЕ ТРЕБОВАНИЯ

  • 1. Kumar S., Nehra M., Khurana S., et al. Aspects of pointof-care diagnostics for personalized health wellness // Int. J. Nanomedicine. 2021. Vol. 16. P. 383–402. DOI: 10.2147/IJN.S267212
  • 2. Liu D., Wang Y., Li X., et al. Integrated microfluidic devices for in vitro diagnostics at point of care // Aggregate. 2022. e184. DOI: 10.1002/agt2.184
  • 3. Pandey C.M., Augustine S., Kumar S., et al. Microfluidics based point-of-care diagnostics // Biotechnol. J. 2018. Vol. 13, is. 1. Id. 1700047. DOI: 10.1002/biot.201700047
  • 4. Xiguang L., Xiangzhi Z., Gerald K.J., et al. The creation of point-of-careology // Point of Care: The Journal of Near-Patient Testing & Technology. 2019. Vol. 18, № 3. Р. 77–84. DOI: 10.1097/POC.0000000000000191
  • 5. Wang C., Liu M., Wang Z., et al. Point-of-care diagnostics for infectious diseases: From methods to devices // Nano Today. 2021. Vol. 37. Id. 101092. DOI: 10.1016/j.nantod.2021.101092
  • 6. Liu Y., Zhan L., Qin Z., et al. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis // ACS Nano. 2021. Vol. 15, № 3. P. 3593−3611. DOI: 10.1021/acsnano.0c10035
  • 7. Majdinasab M., Badea M., Marty J.L. Aptamer-based lateral flow assays: Current trends in clinical diagnostic rapid tests // Pharmaceuticals. 2022. Vol. 15, № 1. DOI: 10.3390/ph15010090
  • 8. Pohanka M. Point-of-care diagnoses and assays based on lateral flow test // Int. J. Anal. Chem. 2021. Vol. 2021. ID 6685619. DOI: 10.1155/2021/6685619
  • 9. Сафронова В.А., Самсонова Ж.В., Григоренко В.Г., Осипов А.П. Определение прогестерона методом латерального проточного иммуноанализа // Вестн. Моск. Ун-та. Сер. 2. Химия. 2012. Т. 53, № 5. C. 326–334. URL: https://www.elibrary.ru/item.asp?id=18751263
  • 10. Nguyen N.N.T., McCarthy C., Lantigua D., CamciUnal G. Development of diagnostic tests for detection of SARS-CoV-2 // Diagnostics. 2020. Vol. 10, № 11. Id. 905. DOI: 10.3390/diagnostics10110905
  • 11. Carbon Valley Farmer and Miner: Lateral flow assay market size volume, share, demand growth, business opportunity by 2030. [Электронный ресурс]. 2022. URL:
  • http://www.cvfarmerandminer.com/content/lateral-flowassay-market-size-volume-share-demand-growthbusiness-opportunity-by-2030 (дата обращения: 01.07.2022).
  • 12. www.biovendor.cz/userfiles/microsites/genexpert/tri%20v%20rade.png (дата обращения 01.07.2022).
  • 13. Cambridge Consultants. Final Report: Cost of goods and manufacturing analysis of GeneXpert cartridges. [Электронный ресурс]. 2019. 37 p. URL: https://msfaccess.org/sites/default/files/201912/2018%20COGS%20analysis%20of%20Xpert%20MTB_RIF%20Ultra%20cartridges.pdf (дата обращения: 01.07.2022).
  • 14. Gotham D., McKenna L., Deborggraeve S., Madoori S., Branigan D. Public investments in the development of GeneXpert molecular diagnostic technology // PLoS ONE. 2021. DOI: 10.1371/journal.pone.0256883
  • 15. Xpert® Xpress SARS-CoV-2: Инструкция по применению. [Электронный ресурс]. Cepheid, 2021. 28 p. URL:
  • https://www.cepheid.com/Package%20Insert%20Files/Xpress-SARS-CoV-2/Xpert%20Xpress%20SARS-CoV2%20Assay%20RUSSIAN%20Package%20Insert%20302-3787-RU-RU%20Rev.%20B.pdf (дата обращения: 01.07.2022).
  • 16. Niemz A., Ferguson T.M., Boyle D.S. Point-of-care nucleic acid testing for infectious diseases // Trends. Biotechnol. 2011. Vol. 29, is. 5. P. 240–250. DOI: 10.1016/j.tibtech.2011.01.007
  • 17. Biomerieux. URL: www.biomerieux-russia.com (дата обращения: 01.07.2022).
  • 18. Poritz M.A., Blaschke A.J., Byington C.L., et al. FilmArray, an automated nested multiplex PCR system for multipathogen detection: development and application to respiratory tract infection. // PLoS One. 2011. Vol. 6, no. 11. DOI: 10.1371/journal.pone.0026047
  • 19. Seiner D.R., Colburn H.A., Baird C., et al. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis // J. Appl. Microbiol. 2013. Vol. 114, is. 4. Р. 992–1000. DOI: 10.1111/jam.12107
  • 20. Dailey P.J., Osborn J. Landscape of molecular platforms for near-patient testing: the MAPDx Program [Электронный ресурс]. Geneva: FIND, 2019. 36 p. URL: https://www.finddx.org/wpcontent/uploads/2019/08/Public_Molecular-LandscapeReport_FINAL-Aug2019docx.pdf (дата обращения: 01.07.2022).
  • 21. Tuberculosis diagnostics technology and market landscape. Technical report. 4th edition. Switzerland: World Health Organization, 2015. 88 c.
  • 22. The next generation in molecular diagnostics. URL: https://tangenbiosciences.com/ (дата обращения: 01.07.2022).
  • 23. Морозова К. Лаборатория на диске: Tangen разрабатывает новый метод диагностики. [Электронный ресурс] PCR.news [сайт], 2019. URL: https://pcr.news/novosti/laboratoriya-na-diske-tangenrazrabatyvaet-novyy-metoddiagnostiki/?ysclid=l4y86hmnip924385457 (дата обращения: 01.07.2022).
  • 24. Tangen Biosciences [Электронный ресурс]. URL: www.cbinsights.com/company/tangen-biosciences (дата обращения: 01.07.2022).
  • 25. LabWare Portable Disease Surveillance Lab (PDSL): Fighting COVID-19 and Reducing Turnaround Time for Test Results [Электронный ресурс]. URL: www.labware.com/lims/portable-disease-surveillance-lab (дата обращения: 01.07.2022).
  • 26. Stedtfeld R.D., Tourlousse D.M., Seyrig G., et al. Gene-Z: a device for point of care genetic testing using a smartphone // Lab. Chip. 2012. Vol. 12, no. 8. P. 1454–1462. DOI: 10.1039/c2lc21226a
  • 27. Zhang W., Guo S., Carvalho W.S.P., et al. Portable pointof-care diagnostic devices // Anal. Methods. 2016. Vol. 8. P. 7847–7867. DOI: 10.1039/c6ay02158a
  • 28. Pai N.P., Vadnais C., Denkinger C., et al. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries // PLoS Med. 2012. Vol. 9, no. 9. e1001306. DOI: 10.1371/journal.pmed.1001306
  • 29. Kettler H., White K., Hawkes S. Mapping the landscape of diagnostics for sexually transmitted infections. [Электронный ресурс]. TDR World Health Organ, 2004. 44 p. URL: https://apps.who.int/iris/bitstream/handle/10665/68990/TDR_STI_IDE_04.1.pdf (дата обращения: 01.07.2022).
  • 30. Hsieh Y.-H., Gaydos C.A., Hogan M.T., et al. What qualities are most important to making a point of care test desirable for clinicians and others offering sexually transmitted infection testing? // PLoS One. 2011. Vol. 6, is. 4. e19263. DOI: 10.1371/journal.pone.0019263
  • 31. Land K.J., Boeras D.I., Chen X.-S., et al. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes // Nat. Microbiol. 2019. Vol. 4. Р. 46–54. DOI: 10.1038/s41564-018-0295-3
  • 32. Wu G., Zaman M.H. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings // Bull. World Health Organ. 2012. Vol. 90, № 12. P. 914–920. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524957/
  • 33. Lofgren S.M., Morrissey A.B., Chevallier C.C., et al. Evaluation of a dried blood spot HIV-1 RNA program for early infant diagnosis and viral load monitoring at rural and remote healthcare facilities // AIDS. 2009. Vol. 23, is. 18. P. 2459–2466. DOI: 10.1097/QAD.0b013e328331f702
  • 34. Mabey D., Peeling R., Ustianowski A., et al. Diagnostics for the developing world // Nat. Rev. Microbiol. 2004. Vol. 2. P. 231–240. DOI: 10.1038/nrmicro841
  • 35. Mauk M.G., Song J., Liu C., Bau H.H. Simple approaches to minimally-instrumented, microfluidic-based point-ofcare nucleic acid amplification tests // Biosensors. 2018. Vol. 8, is. 1. DOI: 10.3390/bios8010017
  • 36. Primiceri E., Chiriacò M.S., Notarangelo F.M., et al. Key enabling technologies for point-of-care diagnostics // Sensors. 2018. Vol. 18, is. 11. DOI: 10.3390/s18113607
  • 37. Manocha A., Bhargava S. Emerging challenges in pointof-care testing // Сurr. Med. Res. Pract. 2019. Vol. 9, is. 6. P. 227–230. DOI: 10.1016/j.cmrp.2019.11.006
  • 38. Malekjahani A., Sindhwani S., Syed A.M., Chan W.C.W. Engineering steps for mobile point-of-care diagnostic devices // Acc. Chem. Res. 2019. Vol. 52, is. 9. P. 2406–2414. DOI: 10.1021/acs.accounts.9b00200
  • 39. Wang P., Kricka L.J. Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation // Clin. Chem. 2018. Vol. 64, is. 10. P. 1439–1452. DOI: 10.1373/clinchem.2018.287052
  • 40. Sachdeva S., Davis R.W., Saha A.K. Microfluidic pointof-care testing: commercial landscape and future directions // Front. Bioeng. Biotechnol. 2021. DOI: 10.3389/fbioe.2020.602659
  • 41. Mielczarek W.S., Obaje E.A., Bachmann T.T., KersaudyKerhoas M. Microfluidic blood plasma separation for medical diagnostics: is it worth it? // Lab. Chip. 2016. Is. 18. P. 3441–3448. DOI: 10.1039/c6lc00833j
  • 42. Mark D., Haeberle S., Roth G., et al. Microfluidic lab-ona-chip platforms: requirements, characteristics and applications // Chem. Soc. Rev. 2010. Vol. 39, is. 3. P. 1153–1182. DOI: 10.1039/b820557b
  • 43. Martinez A.W., Phillips S.T., Butte M.J., Whitesides G.M. Patterned paper as a platform for inexpensive, lowvolume, portable bioassays // Angew. Chem., Int. Ed. Engl. 2007. Vol. 46, is. 8. P. 1318–1320. DOI: 10.1002/anie.200603817
  • 44. Miyazaki C.M., Carthy E., Kinahan D.J. Biosensing on the centrifugal microfluidic Lab-on-a-Disc platform // Processes. 2020. Vol. 8, is. 11. DOI: 10.3390/pr8111360
  • 45. Smith S., Mager D., Perebikovsky A., et al. CD-based microfluidics for primary care in extreme point-of-care settings // Micromachines. 2016. Vol. 7, is. 2. DOI: 10.3390/mi7020022
  • 46. Knowledge center. URL: www.sightdx.com/knowledgecenter/point-of-care-testing (дата обращения: 01.07.2022).
  • 47. Дементьева Н.И., Морозов Ю.А., Чарная М.А., Гончарова А.В. Технологии Point of care в клинике неотложных состояний // Клиническая лабораторная диагностика. 2013. № 7. С. 5–10. URL: https://www.elibrary.ru/item.asp?id=20253920
  • 48. Harpaldas H., Arumugam S., Campillo Rodriguez C., et al. Point-of-care diagnostics: recent developments in a pandemic age // Lab. Chip. 2021. Vol. 21, is. 23. P. 4517–4548. DOI: 10.1039/d1lc00627d
  • 49. Syedmoradi L., Norton M.L., Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation // Talanta. 2021. Vol. 225. DOI: 10.1016/j.talanta.2020.122002
  • 50. Makower J., Meer A., Denend L. FDA impact on U.S. medical technology innovation: a survey of over 200 medical technology companies [Электронный ресурс]. PricewaterhouseCoopers LLP, 2010. 44 p. URL: https://www.medtecheurope.org/wpcontent/uploads/2015/07/01112010_FDA-impact-on-USmedical-technology-innovation_Backgrounder.pdf (дата обращения: 01.07.2022).
  • 51. Zarei M. Advances in point-of-care technologies for molecular diagnostics // Biosens. Bioelectron. 2017. Vol. 98. P. 494–506. DOI: 10.1016/j.bios.2017.07.024
Еще
Статья научная