Уточненный дискретный метод расчета подкрепленных ортотропных оболочек

Бесплатный доступ

Автором предложен уточненный дискретный метод учета ребер жесткости при расчете тонкостенных оболочечных конструкций. Согласно методу, необходимо добавление разных коэффициентов приведения вдоль разных координатных осей. Для ребер, направленных перпендикулярно рассматриваемому направлению, вводится коэффициент приведения, равный отношению ширины ребер этого направления к линейному размеру оболочки в рассматриваемом направлении. Данный метод дополняет разработанную ранее геометрически нелинейную математическую модель, учитывающую поперечные сдвиги и ортотропию материала. Модель записывается в виде функционала полной потенциальной энергии деформации и может использоваться для разного вида оболочек через задание параметров Ляме и радиусов главных кривизн. Вычислительный алгоритм построен на базе метода Ритца и метода продолжения решения по наилучшему параметру. Программная реализация осуществлена в программном комплексе Maple. Применимость уточненного дискретного метода показана на примере ортотропных пологих оболочек двоякой кривизны, шарнирно-неподвижно закрепленных по контуру и находящихся под действием внешней равномерно распределенной поперечной нагрузки. Параметры материалов были выбраны для стеклопластика T-10/УПЭ22-27 и 0/90 Woven Roving E-Glass/Vinyl Ester. Было произведено сравнение значений критических нагрузок потери устойчивости для разных вариантов подкрепления (сетка ребер от 0 до 12 ребер в каждом направлении) и сопоставление значений с обычным дискретным методом, которое показало, что при обычном дискретном методе значения критических нагрузок существенно завышаются, особенно при увеличении числа ребер жесткости. Сравнение результатов тестовой задачи с результатами экспериментов, полученных другими авторами, показало хорошую согласованность уточненного дискретного метода.

Еще

Оболочки, конструкции, ребра жесткости, дискретный метод, метод ритца, устойчивость, математическая модель, критические нагрузки, ортотропия, функционал

Короткий адрес: https://sciup.org/146282595

IDR: 146282595   |   DOI: 10.15593/perm.mech/2022.4.09

Список литературы Уточненный дискретный метод расчета подкрепленных ортотропных оболочек

  • Кривошапко С.Н. О возможностях оболочечных соружений в современной архитектуре и строительстве // Строительная механика инженерных конструкций и сооружений. - 2013. - № 1 (1). - С. 51-56.
  • Соколов В.Г., Разов И.О. Параметрические колебания и динамическая устойчивость магистральных газопроводов при наземной прокладке // Вестник гражданских инженеров. - 2014. - № 2 (43). - С. 65-68.
  • Al-Hashimi H., Seibi A.C., Molki A. Experimental Study and Numerical Simulation of Domes Under Wind Load // Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference. Prague, Czech Republic: ASME, 2009. - Р. 519-528. DOI: 10.1115/PVP2009-77801.
  • Efimtsov B.M., Lazarev L.A. Forced vibrations of plates and cylindrical shells with regular orthogonal system of stiffeners // Journal of Sound and Vibration. - 2009. - Vol. 327, № 1-2. - Р. 41-54. DOI: 10.1016/j.jsv.2009.05.021.
  • Garcia F.G., Ramos R. Design charts for the local buckling analysis of integrally web-stiffened panels with filleted junctions subjected to uniaxial compressive loads // Thin-Walled Structures. -2021. - Р. 108632. DOI: 10.1016/j.tws.2021.108632.
  • Sun Y., Qiu Y., Wu Y. Modeling of Wind Pressure Spectra on Spherical Domes // International Journal of Space Structures. - 2013. -Vol. 28, № 2. - Р. 87-100. DOI: 10.1260/0266-3511.28.2.87.
  • Wind-induced dynamic behavior and its load estimation of a single-layer latticed dome with a long span / Y. Uematsu, O. Kuri-bara, M. Yamada, A. Sasaki, T. Hongo // Journal of Wind Engineering and Industrial Aerodynamics. - 2001. - Vol. 89, № 14-15. -Р. 1671-1687. DOI: 10.1016/S0167-6105(01)00125-8.
  • Vasiliev V.V., Barynin V.A., Rasin A.F. Anisogrid lattice structures - survey of development and application // Composite Structures. - 2001. - Vol. 54, № 2-3. - Р. 361-370. DOI: 10.1016/S0263-8223(01)00111-8.
  • Experimental and numerical buckling analysis of a thin TRC dome / E. Verwimp, T. Tysmans, M. Mollaert, S. Berg // Thin-Walled Structures. - 2015. - Vol. 94. - Р. 89-97. DOI: 10.1016/j.tws.2015.03.021.
  • Yu W., Li Z.L. Structural Similitude for Prestressed Vibration and Buckling of Eccentrically Stiffened Circular Cylindrical Panels and Shells by Energy Approach // International Journal of Structural Stability and Dynamics. - 2016. - Vol. 16, № 10. -Р. 1550074. DOI: 10.1142/S0219455415500741.
  • Solovei N.A., Krivenko O.P., Malygina O.A. Finite element models for the analysis of nonlinear deformation of shells stepwise-variable thickness with holes, channels and cavities // Magazine of Civil Engineering. - 2015. - № 1 (53). - Р. 56-69. DOI: 10.5862/MCE.53.6.
  • Dung D.V., Nam V.H. An analytical approach to analyze nonlinear dynamic response of eccentrically stiffened functionally graded circular cylindrical shells subjected to time dependent axial compression and external pressure. Part 2: Numerical results and discussion // Vietnam Journal of Mechanics. - 2014. - Vol. 36, № 4. - Р. 255-265. DOI: 10.15625/0866-7136/36/4/3986.
  • Less H., Abramovich H. Dynamic buckling of a laminated composite stringer-stiffened cylindrical panel // Composites Part B: Engineering. - 2012. - Vol. 43, № 5. - Р. 2348-2358. DOI: 10.1016/j.compositesb.2011.11.070.
  • Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach / Y. Qu, S. Wu, Y. Chen, H. Hua // International Journal of Mechanical Sciences. -2013. - Vol. 69. - Р. 72-84. DOI: 10.1016/j.ijmecsci.2013.01.026.
  • Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells / B. Wang, K. Tian, P. Hao, Y. Zheng, Y. Ma, J. Wang // Composite Structures. 2016. T. 152. C. 807-815. DOI: 10.1016/j.compstruct.2016.05.096.
  • Analysis of the influence of stiffness reduction on the load carrying capacity of ring-stiffened cylindrical shell / X. Bai, W. Xu, H. Ren, J. Li // Ocean Engineering. - 2017. - Vol. 135. - P. 52-62. DOI: 10.1016/j.oceaneng.2017.02.034.
  • Barlag S., Rothert H. An idealization concept for the stability analysis of ring-reinforced cylindrical shells under external pressure // International Journal of Non-Linear Mechanics. - 2002. - Vol. 37, № 4-5. - P. 745-756. DOI: 10.1016/S0020-7462(01)00096-8.
  • Van der Neut A. The General Instability of Stiffened Cylindrical Shells under Axial Compression, Report S. 314, National Aeronautical Research Institute (Amsterdam). - 1947.
  • Baruch M., Singer J. Effect of Eccentricity of Stiffeners on the General Instability of Stiffened Cylindrical Shells under Hydrostatic Pressure // Journal of Mechanical Engineering Science. - 1963. - Vol. 5, № 1. - P. 23-27. DOI: 10.1243/JMES_JOUR_1963_005_005_02.
  • Block D.L., Card M.F., Mikulas M.M.Jr, Buckling of eccentrically stiffened orthotropic cylinders. NASA TN D-2960. August 1965.
  • Singer J., Baruch M., Harari O. On the stability of eccentrically stiffened cylindrical shells under axial compression // International Journal of Solids and Structures. - 1967. - Vol. 3, № 4. -P. 445-470. DOI: 10.1016/0020-7683(67)90001-7.
  • Buckling load analysis of grid stiffened composite cylinders / S. Kidane, G. Li, J. Helms, S.-S. Pang, E. Woldesenbet // Composites Part B: Engineering. - 2003. - Vol. 34, № 1. - P. 1-9. DOI: 10.1016/S1359-8368(02)00074-4.
  • Jaunky N., Knight N.F., Ambur D.R. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels // Composites Part B: Engineering. - 1996. -Vol. 27, № 5. - P. 519-526. DOI: 10.1016/1359-8368(96)00032-7.
  • Amiro I. Ya., Zarutskii V.A. Stability of ribbed shells // Soviet Applied Mechanics. - 1983. - Vol. 19, № 11. - P. 925-940. DOI: 10.1007/BF01362647.
  • Huang S., Qiao P. A new semi-analytical method for nonlinear stability analysis of stiffened laminated composite doubly-curved shallow shells // Composite Structures. - 2020. -Vol. 251. - P. 112526. DOI: 10.1016/j.compstruct.2020.112526.
  • Khalmuradov R.I., Ismoilov E.A. Nonlinear vibrations of a circular plate reinforced by ribs // IOP Conference Series: Earth and Environmental Science. - 2020. - Vol. 614. - P. 012071. DOI: 10.1088/1755-1315/614/1/012071.
  • Lee Y.-S., Kim Y.-W. Vibration analysis of rotating composite cylindrical shells with orthogonal stiffeners // Computers & Structures. - 1998. - Vol. 69, № 2. - P. 271-281. DOI: 10.1016/S0045-7949(97)00047-3.
  • Mustafa B.A.J., Ali R. An energy method for free vibration analysis of stiffened circular cylindrical shells // Computers & Structures. - 1989. - Vol. 32, № 2. - P. 355-363. DOI: 10.1016/0045-7949(89)90047-3.
  • Sadeghifar M., Bagheri M., Jafari A.A. Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity // Archive of Applied Mechanics. - 2011. - Vol. 81, № 7. - P. 875-886. DOI: 10.1007/s00419-010-0457-0.
  • Free vibrations of rotating composite conical shells with stringer and ring stiffeners / M. Talebitooti, M. Ghayour, S. Ziaei-Rad, R. Talebitooti // Archive of Applied Mechanics. - 2010. -Vol. 80, № 3. - P. 201-215. DOI: 10.1007/s00419-009-0311-4.
  • Wang C.M., Swaddiwudhipong S., Tian J. Ritz Method for Vibration Analysis of Cylindrical Shells with Ring Stiffeners // Journal of Engineering Mechanics. - 1997. - Vol. 123, № 2. -P. 134-142. DOI: 10.1061/(ASCE)0733-9399(1997)123:2(134).
  • Wang J.T.-S., Hsu T.-M. Discrete analysis of stiffened composite cylindrical shells // AIAA Journal. - 1985. - Vol. 23, № 11. - P. 1753-1761. DOI: 10.2514/3.9162.
  • Zhao X., Liew K.M., Ng T.Y. Vibrations of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiff-eners // International Journal of Solids and Structures. - 2002. -Vol. 39, № 2. - P. 529-545. DOI: 10.1016/S0020-7683(01)00194-9.
  • Bich D.H., Dung D.V., Nam V.H. Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells // Composite Structures. - 2013. -Vol. 96. - P. 384-395. DOI: 10.1016/j.compstruct.2012.10.009.
  • Buragohain M., Velmurugan R. Buckling Analysis of Composite Hexagonal Lattice Cylindrical Shell using Smeared Stiffener Model // Defence Science Journal. - 2009. T. 59, - № 3. - P. 230-238. DOI: 10.14429/dsj.59.1516.
  • Srinivasan R.S., Krishnan P.A. Dynamic analysis of stiffened conical shell panels // Computers & Structures. - 1989. -Vol. 33, № 3. - P. 831-837. DOI: 10.1016/0045-7949(89)90257-5.
  • Totaro G. Flexural, torsional, and axial global stiffness properties of anisogrid lattice conical shells in composite material // Composite Structures. - 2016. - Vol. 153. - P. 738-745. DOI: 10.1016/j.compstruct.2016.06.072.
  • Tu T.M., Loi N.V. Vibration Analysis of Rotating Functionally Graded Cylindrical Shells with Orthogonal Stiffeners // Latin American Journal of Solids and Structures. - 2016. - Vol. 13, № 15. - P. 2952-2969. DOI: 10.1590/1679-78252934.
  • Jones R.M. Buckling of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners // AIAA Journal. -1968. - Vol. 6, № 12. - P. 2301-2305. DOI: 10.2514/3.4986.
  • Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell / M. Ren, T. Li, Q. Huang, B. Wang // Journal of Reinforced Plastics and Composites. - 2014. -Vol. 33, № 16. - Р. 1508-1519. DOI: 10.1177/0731684414537881.
  • Лурье А.И. Общие уравнения оболочки, подкрепленной ребрами жесткости. - Л., 1948. - 28 с.
  • Власов В.З. Контактные задачи по теории оболочек и тонкостенных стержней // Изв. АН СССР. ОТН. - 1949. - № 6. - C. 819-939.
  • Новожилов В.В. Теория тонких оболочек. - Л.: Суд-промиздат, 1962. - 431 с.
  • Вольмир А.С. Устойчивость деформируемых систем. -М.: Наука, 1967. - 984 с.
  • Semenov A. Strength of Steel Shell Cylindrical Panels Reinforced with an Orthogonal Grid of Stiffeners // Journal of Applied and Computational Mechanics. - 2022. - Vol. 8, № 2. -Р. 723-732. DOI: 10.22055/jacm.2022.38968.3317.
  • Karpov V.V. Models of the shells having ribs, reinforcement plates and cutouts // International Journal of Solids and Structures. -2018. - Vol. 146. - Р. 117-135. DOI: 10.1016/j.ijsolstr.2018.03.024.
  • Семенов А.А., Леонов С.С. Метод непрерывного продолжения решения по наилучшему параметру при расчете оболочечных конструкций // Ученые записки Казанского университета. Серия: Физико-математические науки. - 2019. - Т. 161, № 2. - С. 230-249. DOI: 10.26907/2541-7746.2019.2.230-249.
  • Карпов В.В., Семенов А.А. Безразмерные параметры в теории подкрепленных оболочек // Вестник ПНИПУ. Механика. -2015. - № 3. - С. 74-94. DOI: 10.15593/perm.mech/2015.3.07.
  • Тышкевич В.Н. Выбор критерия прочности для труб из армированных пластиков // Известия ВолгГТУ. - 2011. -№ 5 (78). - С. 76-79.
  • Sirivolu D., Hoo Fatt M.S. Dynamic stability of double-curvature composite shells under external blast // International Journal of Non-Linear Mechanics. - 2015. - Vol. 77. - Р. 281-290. DOI: 10.1016/j.ijnonlinmec.2015.09.005.
  • Климанов В.И., Тимашев С.А. Нелинейные задачи подкрепленных оболочек. - Свердловск: УНЦ АН СССР, 1985. - 291 с.
Еще
Статья научная