Вариационно-разностное решение задач деформирования и потери устойчивости упругопластических оболочек вращения с упругим заполнителем при комбинированных квазистатических и динамических осесимметричных нагружениях
Автор: Баженов В.Г., Калинина Ю.А., Нагорных Е.В., Самсонова Д.А.
Статья в выпуске: 1, 2024 года.
Бесплатный доступ
Разработаны постановка и метод численного решения задач деформирования и потери устойчивости упругопластических оболочек вращения с упругим заполнителем при квазистатических и динамических нагружениях. Задача решается в двумерной (плоской или обобщенной осесимметричной с кручением) постановке. Определяющая система уравнений записывается в декартовой или цилиндрической системе координат. Моделирование процесса деформирования упругопластической оболочки осуществляется на основе гипотез теории оболочек типа Тимошенко с учетом геометрических нелинейностей. Кинематические соотношения записываются в скоростях и формулируются в метрике актуального состояния. Упругопластические свойства оболочки описываются теорией течения с нелинейным изотропным упрочнением. Моделирование заполнителя основано на гипотезах механики сплошной среды. Материал заполнителя полагается линейно упругим. Вариационные уравнения движения элементов конструкции (как оболочек, так и заполнителя) редуцируются из трехмерного уравнения баланса виртуальных мощностей работы механики сплошных сред с учетом принятых гипотез теории оболочек либо плоского деформированного состояния или обобщенной осесимметричной деформации с кручением. Моделирование контактного взаимодействия оболочки и заполнителя основано на условии непроникания по нормали и проскальзывания по касательной. Для решения определяющей системы уравнений применяется конечно-разностный метод и явная схема интегрирования по времени типа «крест». Апробация методики выполнена на задаче потери устойчивости стальной цилиндрической оболочки с упругим заполнителем при квазистатическом и динамическом обжатии внешним давлением, линейно возрастающим во времени. Результаты численного исследования сопоставляются с расчетами, выполненными с применением двух других подходов, разработанных авторами ранее. Первый подход основан на полномасштабном моделировании процесса деформирования оболочки и заполнителя в рамках механики сплошных сред. Во втором подходе применяется упрощенная постановка, в которой деформирование оболочки моделируется согласно гипотезам теории непологих оболочек типа Тимошенко с учетом геометрических нелинейностей, а заполнитель - гипотезе основания Винклера. Разработанные подходы позволяют моделировать нелинейное докритическое деформирование оболочек вращения с упругим заполнителем, определять предельные (критические) нагрузки в широком диапазоне скоростей нагружения с учетом геометрических несовершенств формы, исследовать процессы потери устойчивости по осесимметричным и неосесимметричным формам при динамических и квазистатических комбинированных нагружениях в условиях плоской и осесимметричной деформации.
Упругопластические оболочки вращения, упругий заполнитель, неосесимметричная потеря устойчивости, кручение, гипотезы тимошенко, основание винклера, численное моделирование, контактное взаимодействие, осесимметричное нагружение, численное моделирование
Короткий адрес: https://sciup.org/146282823
IDR: 146282823 | DOI: 10.15593/perm.mech/2024.1.05
Список литературы Вариационно-разностное решение задач деформирования и потери устойчивости упругопластических оболочек вращения с упругим заполнителем при комбинированных квазистатических и динамических осесимметричных нагружениях
- Исследование упругопластического деформирования цилиндрических оболочек при осевом ударном нагружении / А.И. Абакумов, Г.А. Квасков, С.А. Новиков, В.А. Синицин, А.А. Учаев // ПМТФ. – 1988. – № 3. – С. 150–153.
- Выпучивание упругопластических цилиндрических и конических оболочек при осевом ударном нагружении / В.Г. Баженов, М.С. Баранова, А.И. Кибец, В.К. Ломунов, Е.В. Павленкова // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. 2010. – Т. 152, № 4. – С. 86–105.
- Эйлер, Л. Метод нахождения кривых линий, обладающих свойствами максимума либо минимума или решение изопериметрической задачи, взятой в самом широком смысле / Л. Эйлер. – М., Л.: ГИТТЛ, 1934. – 600 с.
- Лаврентьев, М.А. Динамические формы потери устойчивости упругих систем / М.А. Лаврентьев, А.Ю. Ишлинский // ДАН. – 1949. – Т. 64, № 6. – С. 776–782.
- Вольмир, А.С. Устойчивость деформируемых систем / А.С. Вольмир. – М.: Наука, 1967. – 984 с.
- Беляев, А.К. Динамический подход к задаче Ишлинского – Лаврентьева / А.К. Беляев, Д.Н. Ильин, Н.Ф. Морозов // Известия РАН. МТТ. – 2013. – № 5. – С. 28–33.
- Задача Ишлинского – Лаврентьева на начальном этапе движения / Н.Ф. Морозов, А.К. Беляев, П.Е. Товстик, Т.П. Товстик // ДАН. – 2015. – Т. 463, № 5. – С. 543–546.
- Морозов, Н.Ф. Устойчивость стержня при длительном осевом сжатии / Н.Ф. Морозов, П.Е. Товстик, Т.П. Товстик // Проблемы прочности и пластичности. – 2015. – Т. 77, № 1. – С. 40–48.
- Dynamic implosion of underwater cylindrical shells: Experiments and Computations / C. Farhat, K.G. Wangc, A. Main, S. Kyriakides, L.-H. Lee, K. Ravi-Chandar, T. Belytschko // International Journal of Solids and Structures. 2013. – Vol. 50. – Р. 2943–2961.
- Giezen, J.J. Plastic buckling of cylindrical shells under biaxial loading / J.J. Giezen, C.D. Babcock, J. Singer // Experimental Mechanics. – 1990. – Vol. 33. – Р. 337–343. doi: 10.1007/BF02325990
- Carvelli, V. Buckling strength of GFRP under-water vehicles / V. Carvelli, N. Panzeri, C. Poggi // Composites: Part B. – 2001. – Vol. 32. – P. 89–101.
- Ghazijahani, T.G. Experiments on conical shell reducers under uniform external pressure / T.G. Ghazijahani, H. Showkati // Journal of Constructional Steel Research. – 2011. – Vol. 67. – P. 1506–1515. doi: 10.1016/j.jcsr.2011.03.024
- Ильгамов, М.А. Прочность, устойчивость и динамика оболочек с упругим заполнителем / М.А. Ильгамов, В.А. Иванов, Б.В. Гулин. – М.: Наука, 1977. – 331 с.
- Тарлаковский, Д.В. Воздействие нестационарного давления на цилиндрическую оболочку с упругим заполнителем / Д.В. Тарлаковский, Г.В. Федотенков // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. – 2016. – Т. 158, № 1. – С. 141–151.
- О влиянии заполнителя на критические параметры импульса давления при динамической потере устойчивости цилиндрической оболочки / В.В. Бендюков, В.В. Дерюшев, М.М. Лурье, П.Н. Овчаров // Научный вестник МГТУ ГА. – 2005. – № 84 (2). – С. 131–137.
- Stability improvement of thin isotropic cylindrical shells with partially filled soft elastic core subjected to external pressure / A.P. Dash, R. Velmurugan, M.S.R. Prasad, R.S. Sikarwar // Thin– Walled Structures, B. – 2016. – Vol. 98. – P. 301–311. doi: 10.1016/j.tws.2015.09.028.
- Karam, G.N. Elastic buckling of cylindrical shells with elastic cores. I / G.N. Karam, L.J. Gibson // Analysis Int J Solids Structures. 1995. – Vol. 32. – P. 1259–1263
- Ye, L. Buckling of a thin-walled cylindrical shell with foam core under axial compression / L. Ye, G. Lu, L.S. Ong // Thin– Walled Structures. – Vol. 49, no. 1. – P. 106–111. doi: 10.1016/j.tws.2010.08.011
- Пастернак, П.Л. Основы нового метода расчета фундаментов на упругом основании при помощи двух коэффициентов постели / П.Л. Пастернак. – М.: Гос. изд-во литературы по строительству и архитектуре, 1954. – 56 с.
- Иванов, В.А. Определение реакции заполнителя в задачах взаимодействия его с оболочкой / В.А. Иванов // Вестник Казанского технологического университета. – 2011. – № 8. – С. 224–228.
- Луговой, П.З. Влияние упругого основания на дисперсию гармонических волн в продольно подкрепленных цилиндрических оболочках / П.З. Луговой, Н.Я. Прокопенко // Прикладная механика. – 2015. – Т. 51, № 5. – С. 116–124.
- Прикладные задачи механики композитных цилиндрических оболочек / Ю.С. Соломонов, В.П. Георгиевский, А.Я. Недбай, В.А. Андрюшин. – М.: Изд-во Физматлит, 2013. – 343 с.
- Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler – Pasternak elastic foundation subjected to a linearly increasing load / Kang Gao, Wei Gao, Di Wu, Chongmin Song // Journal of Sound and Vibration. – 2018. – No. 415. – P. 147–168. doi: 10.1016/j.jsv.2017.11.038
- Nobili, A. A cracked infinite Kirchhoff plate supported by a two-parameter elastic foundation / A. Nobili, E. Radi, N. Lanzoni // J. Eur. Ceram. Soc. – 2014. doi: 10.1016/j.jeurceramsoc.2013.12.029
- Buckling patterns of complete spherical shells filled with an elastic medium under external pressure / M. Sato, M.A. Wadee, K. Iiboshi, T. Sekizawa, H. Shima // International Journal of Mechanical Sciences. – 2012. doi: 10.1016/j.ijmecsci.2012.02.001
- Power law of critical buckling in structural members supported by a Winkler foundation / M. Sato, S. Harasawa, Y. Konishi, T. Maruyama, S.J. Park // Journal of Mechanics. – 2017. – Vol. 33, no. 3. – P. 369–374. doi: 10.1017/jmech.2016.112
- Shaterzadeh, A.R. Non-linear analysis of asymmetrical eccentrically stiffened FGM cylindrical shells with non-linear elastic foundation / A.R. Shaterzadeh, K. Foroutan // Journal of Solid Mechanics. – 2017. – Vol. 9, no. 4. – P. 849–864.
- Теоретический и экспериментальный анализ больших деформаций и предельных состояний упругопластических оболочек вращения при комбинированных сложных нагружениях / А.А. Артемьева, В.Г. Баженов, Д.А. Казаков, А.И. Кибец, Е.В. Нагорных // ПММ. – 2015. – Т. 79, вып. 4. – С. 558–570.
- Моделирование неосесимметричного выпучивания упругопластических оболочек вращения при комбинированных осесимметричных нагружениях / А.А. Артемьева, В.Г. Баженов, Е.В. Нагорных, Д.А. Казаков, Т.В. Кузмичева // ПММ. – 2017. – Т. 81, вып. 5. – C. 610–622.
- Баженов, В.Г. Исследование упругопластического выпучивания оболочек вращения при ударном нагружении / В.Г. Баженов, В.К. Ломунов // Прикл. пробл. прочности и пластичности: Всесоюз. межвуз. сб. Горьк. ун-т. – 1975. – Вып. 2. – С. 44–50.
- Баженов, В.Г. Исследование применимости модели основания Винклера для описания контактного взаимодействия упругопластических оболочек с заполнителем при внешнем давлении / В.Г. Баженов, Е.В. Нагорных, Д.А. Самсонова // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2020. – № 4. – С. 36– 48. doi: 10.15593/perm.mech/2020.4.04
- Баженов, В.Г. Численное и экспериментальное исследование упругопластических процессов растяжения–кручения осесимметричных тел при больших деформациях / В.Г. Баженов, Д.В. Жегалов, Е.В. Павленкова // Изв. РАН. МТТ. – 2011. – № 2. – C. 57–66.
- Экспериментальное и теоретическое исследование больших деформаций цилиндрических образцов из стали 09Г2С с концентраторами напряжений при нагружении растяжением–кручением до разрушения / В.Г. Баженов, Д.А. Казаков, Е.В. Нагорных, Д.Л. Осетров, А.А. Рябов // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2018. – № 4. – С. 69–81. doi: 10.15593/perm.mech/2018.4.06
- Зефиров, С.В. Импульсное деформирование и контактное взаимодействие упругопластических элементов осесимметричных конструкций / С.В. Зефиров // Прикладные проблемы прочности и пластичности. Алгоритмизация решения задач упругости и пластичности: Всесоюз. межвуз. сб. / Горьк. ун-т. – 1984. – С. 152–153.
- Баженов, В.Г. Численное моделирование задач нестационарного контактного взаимодействия деформируемых конструкций / В.Г. Баженов, С.В. Зефиров, И.Н. Цветкова // Прикладные проблемы прочности и пластичности. Численное моделирование физико-механических процессов: межвуз. сб. – М.: Товарищество научных изданий КМК, 1995. – Вып. 52. – С. 154–160.
- Пакет программ «Динамика-2» для решения плоских и осесимметричных нелинейных задач нестационарного взаимодействия конструкций со сжимаемыми средами / В.Г. Баженов, С.В. Зефиров, А.В. Кочетков, С.В. Крылов, В.Р. Фельдгун // Математическое моделирование. – 2000. – Т. 12 (6). – С. 67–72.
- Постановка и численное решение задачи потери устойчивости упругопластических оболочек вращения с упругим заполнителем при комбинированных осесимметричных нагружениях с кручением / В.Г. Баженов, Д.А. Казаков, А.И. Кибец, Е.В. Нагорных, Д.А. Самсонова // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2022. – № 3. – С. 95–106. doi: 10.15593/perm.mech/2022.3.10