Variations of endocrine hormones concentrations in Tupaia belangeri under simulated seasonal acclimatized: role of leptin sensitivity
Автор: Zhu Wan-Long, Mu Yuan, Zhang Lin, Wang Zheng-Kun
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.9, 2013 года.
Бесплатный доступ
Seasonal variations in endocrine hormones concentrations are important for the survival of small mammals during acclimatization. In order to understand the role of leptin sensitivity on other endocrine hormones concentrations, we examined body mass, serum leptin level, serum insulin, tri-iodothyronine (T 3), thyroxine (T 4) and thyroid stimulating hormone (TSH) concentrations in Tupaia belangeri under seasonal acclimatized (The simulated temperature and photoperiod in winter: 5°C and SD, 8h :16h Light: Dark; the simulated temperature and photoperiod in summer: 30°C and SD, 16h :8h Light: Dark) for 4 weeks. The results showed that body mass, serum leptin level, serum T 3, T 4 concentrations and T 3/ T 4 showed significant variation, but serum insulin and TSH concentrations showed no variations between treatment group. There were positive correlation between serum leptin level and insulin, T 4 concentrations, and were negative correlation between serum leptin level and body mass, T 3 concentrations. However, no correlation was found between serum TSH concentrations and serum leptin level. The present results suggested T. belangeri overcome winter thermogenesis challenges by adjusting body mass and endocrine hormones concentrations. Furthermore, leptin may play an potential role in their body mass regulation in T. belangeri.
Tupaia belangeri, endocrine hormones concentrations, seasonal acclimatized
Короткий адрес: https://sciup.org/14323738
IDR: 14323738
Список литературы Variations of endocrine hormones concentrations in Tupaia belangeri under simulated seasonal acclimatized: role of leptin sensitivity
- Bartness, T.J., Demas, G.E., Song, C.K. (2002) Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp. Biol. Med., 227 (6): 363-376.
- Bing, C., Frankish, H.M., Pickavance, L. (1998) Hyperphagia in cold-exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY. Am J Physiol, 274: 62-68.
- Ceddia, R.B., William, W.N., Carpinelli, A.R. (1999) Modulation of insulin secretion by leptin. Gen Pharmacol., 32(2): 233-237.
- Cusin, I., Sainsbury, A., Doyle, P. (1995) The ob gene and insulin: A relationship leading to clues to the understanding of obesity. Diabetes. Dec, 44(12): 1467-1470.
- Du, J.Z., You, Z.B., (1992) A radioimmunoassay of corticotrophin releasing factor of hypothalamus in Ochotona curzoniae. Acta Theriol. Sin., 12 (3): 223-229.
- Ducommun, P., Sakiz, E., Guillemin, R. (1966) Dissociation of the acute secretions of thyrotropin and adrenocorticotropin. Am J Physiol, 210: 1257-1259.
- Dunn, M.F. (2005). Zinc-ligand interactions modulate assembly and stability of the insulin hexamer-a review. Biometals, 18 (4): 295-303.
- Emilsson, V. (1997) Leptin inhibits insulin secretion and reduces insulin mRNA levels in rat isolated pancreatic islets. Biochem Biophys Res Commun., 238: 267-270.
- Escobar-Morreale, H.F., Escobar del Rey, F., Morreale de Escobar, G. (1997) Thyroid hormones influence serum leptin concentrations in the rat. Endocrinol, 138: 4485-4488.
- Hefco, E., Krulich, L., Illner, P., Larsen, R. (1975) Effect of acute exposure to cold on the activity of the hypothalamic-pituitary-thyroid system. Endocrinology, 97: 1185-1195.
- Hershman, J.M., Read, D.G., Bailey, A.L., Norman, V.D., Gibson, T.B. (1970) Effect of cold exposure on serum thyrotropin. J Clin Endocr, 30: 430-434.
- Iverson, S.L., Turner, B.N. (1974) Winter weight dynamics in Microtus pennsylvanicus. Ecology, 55: 1030-1041.
- Kelly, T.F., Lieberman, D.Z. (2009) The use of triiodothyronine as an augmentation agent in treatment-resistant bipolar II and bipolar disorder NOS. J Affect Disord., 116 (3); 222-226.
- Kirkegaard, C., Faber, J. (1998) The role of thyroid hormones in depression. Eur J Endocrinol, 138 (1): 1-9.
- Klingenspor, M., Dickopp, A., Heldmaier, G. (1996) Short photoperiod reduces leptin gene expression in white and brown adipose tissue of Djungarian hamsters. FEBS Letters, 399: 290-294.
- Klingenspor, M., Niggemann, H., Heldmaier, G. (2000) Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. J. Comp. Physiol. B, 170: 37-43.
- Li, Q.F., Sun, R.Y., Huang, C.X., Wang, Z.K., Liu, X.T., Hou, J.J., Liu, J.S., Cai, L.Q., Li, N., Zhang, S.Z., Wang, Y. (2001) Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp. Biochem. Physiol., 129: 949-961.
- Li, X.S., Wang, D.H., Yang, M. (2004) Effects of cold acclimation on body weight, serum leptin level, energy metabolism and thermogenesis in the Mongolian gerbil Meriones unguiculatus. Acta Zool. Sin., 50; 334-340.
- McNabb, F.M.A. (1992) Thyroid-hormones, their activation, degradation and effects on metabolism. J Nutr., 125: 1773-1776.
- McMinn, J.E., Seeley, R.J., Wilkinson, C.W. (1998) NPY-induced overfeeding suppresses hypothalamic NPY mRNA expression: potential roles of plasma insulin and leptin. Regul Pept., 75-76; 425-431.
- Nagy, N., Negus, N.C. (1993) Energy acquisition and allocation in male collared lemmings (Dicrastonys groenlandlcus): effects of photoperiod, temperature, and diet quality. Physiol Zool, 66: 537-560.
- Nagy, T.R., Gower, B.A., Stetson, M.H. (1995) Endocrine correlates of seasonal body mass dynamics in the collared lemming Dicrostonyx groenlandicus. Amer. Zool, 35: 246-258.
- Nieminen, P., Hyvarinen, H. (2000) Seasonality of leptin levels in the BAT of the common shrew Sorex araneus. Verlag der Zeitschrift fur Naturforschung, 55: 455-460.
- Parmentier, M., Libert, F., Maenhaut, C., Lefort, A., Gérard, C., Perret, J., Van-Sande, J., Dumont, J.E., Vassart, G. (1989) Molecular cloning of the thyrotropin receptor. Science, 246(4937): 1620-1622
- Rafael, J., Vsiansky, P., Heldmaier, G. (1985) Increased contribution of brown adipose tissue to nonshivering thermogenesis in the Djungarian hamster during cold-adaptation. J. Comp. Physiol B, 155; 717-722.
- Rousseau, K., Atcha, Z., Loudon, A.S.I. (2003) Leptin and seasonal mammals. J Neuroendocrinol, 15(4); 409-414.
- Saad, M.F., Riad-Gabriel, M.G., Khan, A. (1998) Diurnal and ultra Ian rythmictity of plasma leptin: Effects of gender and adipostity. J Clin Endocrinol Metab, 83: 453.
- Saladin, R., De Vos, P., Guerre-Millo, M. (1995) Transient increase in obese gene expression after food intake or insulin administration. Nature, 377(6549): 527-529.
- Tomasi, T.E., Hamilton, J.S., Horwitz, B.A. (1987) Thermogenic capacity in shrews. J. Therm. Biol., 12(2): 143-147.
- Trayhurn, P., Beattie, J.H. (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretary organ. Proc Nutr Soc., 60: 329-339.
- Voltura, M.B., Wunder, B.A. (1998) Effects of ambient temperature, diet quality, and food restriction on body composition dynamics of the prairie vole Microtus ochrogaster. Physiol. Zool., 71(3): 321-328.
- Wang, Y.X., Li, C.Y., Ma, S.L. (1991) The classification and ecology of tree shrews. In: Peng, Y., Ye, Z., Zou, R. Eds. Biology of Chinese Tree shrews (Tupaia belangeri Chinensis). Yunnan Scientic and Technological Press, Kunming.
- Wu, S.Y., Kim, J.K., Chopra, I.J., Murata, Y., Fisher, D.A. (1991) Postnatal changes in lams of two pathways for thyroxine 5'-monodeiodinase in brown adipose tissue. Am. J. Physiol., 261: E257-261.
- Zhang, Y., Proenca, R., Mafei, M., Barone, M., Leopold, L., Friedman, J.M. (1994) Positional cloning of the mouse obese gene and it is human homologue. Nature, 372: 425-432.
- Zhang, L., Wang, R., Zhu, W., Liu, P., Cai, J., Wang, Z., Sivasakthivel, S., Lian, X. (2011) Adaptive thermogenesis of liver in tree shrew (Tupaia belangeri) during cold acclimation. Anim. Biol., 61: 385-401.
- Zhang, L., Liu, P., Zhu, W., Cai, J., Wang, Z. (2012a) Variations in thermal physiology and energetics of the tree shrew (Tupaia belangeri) in response to cold acclimation. J. Comp. Physiol. B, 182: 167-176.
- Zhang, L., Zhang, H., Zhu, W., Li, X., Wang, Z. (2012b) Energy metabolism, thermogenesis and body mass regulation in tree shrew (Tupaia belangeri) during subsequent cold and warm acclimation. Comp. Biochem. Physiol. A, 162: 437-442.
- Zhang, L., Zhu, W.L., Wang, Z.K. (2012c) Role of photoperiod on hormone concentrations and adaptive capacity in tree shrews, Tupaia belangeri. Comp. Biochem. Physiol. A, 163: 253-259.
- Zhu, W.L., Jia, T., Lian, X., Wang, Z.K. (2010) Effects of cold acclimation on body mass, serum leptin level, energy metabolism and thermognesis in Eothenomys miletus in Hengduan Mountains region. J. Therm. Biol., 35(1): 41-46.
- Zhu, W.L., Wang, B., Cai, J.H., Lian, X., Wang, Z.K. (2011) Thermogenesis, energy intake and serum leptin in Apodemus chevrieri in Hengduan Mountains region during cold acclimation. J. Therm. Biol., 36(3): 181-186.
- Zhu, W.L., Zhang, H., Wang, Z.K. 2012. Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri) the roles of photoperiod and cold. J. Therm. Biol., 37: 479-484.
- Zou, R., Ji, W., Yan, H., Lu, J. (1991) The captivities and reproductions of tree shrews. In: Peng, Y., Ye, Z., Zou, R. Eds. Biology of Chinese Tree shrews (Tupaia belangeri chinensis). Yunnan Scientic and Technological Press, Kunming.