Video based flame detection algorithm
Автор: Pyataeva A.V., Bandeev O.E.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Математика, механика, информатика
Статья в выпуске: 4 т.18, 2017 года.
Бесплатный доступ
Video based flame detection from a surveillance camera offers early warning to ensure prompt reaction to devastat- ing fire hazards. Many existing fire detection methods based on computer vision technology have achieved high detec- tion rates, but often with unacceptably high false-alarm rates. This paper presents an automatic flame detection method using computer vision and pattern recognition techniques. This method uses the features of fire, such as the moving parameters, chromatic components, and geometrical (flickering) features. For experimental researches the databases of Bilkent University and Dyntex database were used. The developed method of flame detection on video provides 89.5-98.2 % of accuracy for flame sequences. The number of frames of test video sequences was 6.853, the total duration of the videos is 5 minutes. Experimental results show that the proposed method is feasible and effective for video based flame detection.
Flame detection, flame features, fire, video sequence
Короткий адрес: https://sciup.org/148177763
IDR: 148177763
Список литературы Video based flame detection algorithm
- Спичкин Ю. В., Калач А. В., Сорокина Ю. Н. К вопросу об особенностях возникновения и развития горения дисперсных материалов//Вестник Воронежского института ГПС МЧС России. 2014. Вып. 3 (12) С. 7-12.
- Favorskaya M., Pyataeva A., Popov A. Spatio-temporal smoke clustering in outdoor scenes based on boosted random forests//Procedia Computer Science. 2016. Vol. 96. P. 762-771.
- Goncalves W. N., Machado B. B., Bruno O. M. A complex network approach for dynamic texture recognition//Neurocomputing. 2015. Vol. 153. P. 211-220.
- Богуш P. П., Тычко Д. А. Алгоритм комплексного обнаружения дыма и пламени на основе анализа данных систем видеонаблюдения//Техническое зрение в системах управления. М., 2015. С. 65-71.
- Бровко Н. В., Богуш Р. П. Анализ методов обработки последовательностей видеоизображений в приложении к задаче раннего обнаружения пожаров//Вестник Полоцкого государственного университета. 2011. № 12. С. 42-50.
- Han D., Lee B. Flame and Smoke Detection Method for Early Real-Time Detection of a Tunnel Fire//Fire Safety Journal. 2009. Vol. 44 (7). P. 951-961.
- Toreyin B. U., Dedeoglu Y., Gueduekbay U. Computer vision based method for real-time fire and flame detection//Pattern Recognition Letters. 2006. Vol. 27, No. 1. P. 49-58.
- Toreyin B. U., Dedeoglu Y., Cetin A. E. Wavelet based real-time smoke detection in video//Signal Processing: Image Communication, EURASIP. 2005. Vol. 20. P. 255-260.
- Toreyin B. U., Dedeoglu Y., Cetin A. E. Contour based smoke detection in video using wavelets//14th European Signal Processing Conference (EUSIPCO -2006). Italy, 2006. P. 1-5.
- Yaqin Z., Guizhong T., Mingming X. Hierarchical detection of wildfire flame video from pixel level to semantic level//Expert Systems with Applications. 2015. Vol. 42, iss. 8. P. 4097-4104.
- Chunyu Y., Zhibin M., Xi Zh. A Real-time Video Fire Flame and Smoke Detection Algorithm//Procedia Engineering. 2013. Vol. 62. P. 891-898.
- Fast flame detection in surveillance video using logistic regression and temporal smoothing/G. K. Seong //Fire Safety Journal. 2016. Vol. 79. P. 37-43.
- Open Source Computer Vision Library . URL: http://opencv.org/. (дата обращения: 09.10.2017).
- Bilkent database . URL: http://signal.ee.bilkent.edu.tr/VisiFire/Demo/FireClips/(дата обращения: 09.10.2017).
- Renaud P., Fazekas S., Huiskes M. J. DynTex: A comprehensive database of dynamic textures//Pattern Recognition Letters. 2010. Vol. 31, No. 12. P. 1627-1632.