“Virtual CC&RP” - a mathematical model for the control of the unit CC&RP and its visualization with the help of software products WinCC 7.0 and Step 7

Автор: Piskazhova T.V., Sidelnikov S.B., Belolipetskii V.M., Yakivyuk P.N., Sidelnikov A.S.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Технологические процессы и материалы

Статья в выпуске: 2 т.16, 2015 года.

Бесплатный доступ

The Combined Casting and Rolled-Pressing Process (CC&RP) is used for electrotechnical-purposed aluminum rod production, which serves as half-stuff for manufacturing of different-sized aluminum wire, rivets, electrical and welding wire for electrical and radioelectronic industries. Depending on its properties, aluminum rod is widely used in the various industries, including space engineering. CC&RP method is a promising way of metal treatment, which is not yet widely implemented due to insufficiency of the automation algorithms. Automated control should provide specified values of metal consumption, temperature at the rolling mill, temperature mode of pressing node, rod temperature at the matrix end, intake device rotational speed in respect to metal consumption. For this purpose, mathematical model development, as well as its programming realization and visualization are needed. This paper provides statement of modeling task and simplified mathematical model of CC&RP method using the machine for aluminum lengthy products manufacturing. For each node of the machine ODEs is considered, that describes changes of process variables depending of time or coordinates. Initial conditions for each node input are determined from technological constants or previous node outputs. Further, the CC&RP mathematical model is realized with WinCC 7.0 and Step 7 applications using FBD and SCL languages. The process mimic panel is developed and connected with the model. The description of the program structure in Step 7 and the version of machine stationary mode calculation are provided.

Еще

Mathematical model, visualization, programming, cc&rp

Короткий адрес: https://sciup.org/148177442

IDR: 148177442

Статья научная