Вязкоупругие свойства геосинтетических материалов

Автор: Алексеев Николай Николаевич, Коваленко Илья Александрович, Столяров Олег Николаевич, Мельников Борис Евгеньевич

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 5 (56), 2017 года.

Бесплатный доступ

На сегодняшний день геосинтетические материалы находят все новые области применения в строительстве. Вместе с тем актуальной стоит задача по оценке и прогнозированию их механических свойств на длительные времена. Принимая во внимание вязкоупругую природу синтетических полимеров, из которых изготавливаются подавляющее число геосинтетических материалов, в данной статье рассматриваются варианты определения и прогнозирования их вязкоупругих свойств. Проведенный анализ показывает преимущества и недостатки различных методов исследования ползучести геосинтетических материалов, включая прямые измерения, температурно-временную аналогию полимеров (ТВА) и метод ступенчатых изотерм (МСИ)

Еще

Геосинтетические материалы, вязкоупругие свойства, ползучесть, релаксация напряжения, температурно-временная аналогия, метод ступенчатых изотерм

Короткий адрес: https://sciup.org/14322396

IDR: 14322396   |   DOI: 10.18720/CUBS.56.2

Список литературы Вязкоупругие свойства геосинтетических материалов

  • Sarsby R. W. (2012). Geosynthetics in Civil Engineering. Woodhead Publishing Ltd. 2007. pp. 295.
  • Koerner R. M. (2012). Designing With Geosynthetics, 6th Ed. Xlibris Publ. Co. 2012. 914 pages in two volumes.
  • Mounes S.M., Karim M.R., Khodaii A., Almasi M.H. (2016). Evaluation of permanent deformation of geogrid reinforced asphalt concrete using dynamic creep test. Geotextiles and Geomembranes. 2016. No. 44(1). pp. 109-116.
  • Brown S.F., Brodrick B.V. (1981) The Nottingham pavement test facility. Transportation Research Record. 1981. No. 810. pp. 67-72.
  • Sandroni S.S., Gomes R.C., Vilar O.M. (2010). Brazilian research and practice with geosynthetics. 9th International Conference on Geosynthetics -Geosynthetics: Advanced Solutions for a Challenging World. 2010, pp. 3-41.
  • Hufenus R., Rüegger R., Flum D., Sterba I.J. (2005). Strength reduction factors due to installation damage of reinforcing geosynthetics. Geotextiles and Geomembranes. 2005. No. 23(5). pp. 401-424.
  • Kaliakin V.N., Dechasakulsom M. (2002). Development of a general time-dependent model for geogrids. Geosynthetics International. 2002. No. 9(4). pp. 319-342.
  • Allen T.M., Bathurst R.J. (2002). Soil reinforcement loads in geosynthetic walls at working stress conditions. Geosynthetics International. 2002. No. 9 (5-6). pp. 525-566.
  • Christopher B.R., Holtz R.D., Berg R.R. (2001). Geosynthetic reinforced embankments on soft foundations. Geotechnical Special Publication. 2001. No. 122. pp. 206-236.
  • Fourie A.B., Fabian K.J. (1987). Laboratory determination of clay-geotextile interaction. Geotextiles and Geomembranes. 1987. No. 6 (4). pp. 275-294.
  • Richard A. (1985). Material properties for the design of geotextile reinforced slopes. Geotextiles and Geomembranes. 1985. No. 2 (2). pp. 83-109.
  • Canestrari F., Ferrotti G., Abuaddous M., Pasquini E. (2012). Geocomposite-reinforcement of polymer-modified asphalt systems. RILEM Bookseries. 2012. No. 11. pp. 383-395.
  • Leshchinsky B., Evans T.M., Vesper J. (2016). Microgrid inclusions to increase the strength and stiffness of sand. Geotextiles and Geomembranes. 2016. No. 44 (2). pp. 170-177.
  • Yang B.-H., Lai J., Lin J.-H., Tsai P.H. (2016). Simulating the loading behavior of reinforced strip footings with a double-yield soil model. International Journal of Geomechanics. 2016. No. 16(1).
  • Mosallanezhad M., Hataf N., Taghavi S.H. (2016). Experimental and large-scale field tests of grid-anchor system performance in increasing the ultimate bearing capacity of granular soils. Canadian Geotechnical Journal. 2016. No. 53(7). pp. 1047-1058.
  • Singh A., Phanikumar B.R., Prasad R. (2016). Effect of geogrid reinforcement on load carrying capacity of a coarse sand bed. International Journal of Civil Engineering and Technology. 2016. No. 7(3). pp. 1-6.
  • Samal M.R., Saran S., Kumar A., Mukerjee S. (2016). Dynamic behavior of geogrid reinforced pond ash. International Journal of Geotechnical Engineering. 2016. No. 10(2). pp. 114-122.
  • AlKayyal H., Althoff S., Tamaskovics N., Klapperich, H., Awwad T. (2014). Supporting structures reinforced by geogrids -The engineering challenge. 10th International Conference on Geosynthetics. 2014.
  • Chen Q., Farsakh M.A. (2012). Structural contribution of geogrid reinforcement in pavement. Geotechnical Special Publication. 2012. No. (225 GSP). pp. 1468-1475.
  • Ooi T.A., Tee C.H. (2011). Advance in geogrid reinforced slopes in Malaysia. Geotechnical Engineering. 2011. No. 42(1). pp. 9-34.
  • Xiao C., Luan M., Yang Q., Pei J. (2006). An experimental study on creep behaviour and hyperbolic constitutive model of geogrids with applications. Geotechnical Special Publication. 2006. No. 152. pp. 281-286.
  • Hsieh C.W. (2005). Ongoing geosynthetics researches of GSI-Taiwan. Geotechnical Special Publication. 2005. (130-142). pp. 3955-3961.
  • McGown A., Kupec J., Heerten G., Von Maubeuge, K. (2005).Testing biaxial geogrids for specification and design purposes. Geotechnical Special Publication. 2005. (130-142), pp. 4045-4055.
  • Leshchinsky D., Dechasakulsom M., Kaliakin V.N., Ling H.I. (1997). Creep and stress relaxation of geogrids. Geosynthetics International. 1997. No. 4(5). pp. 463-479.
  • Austin R.A. (1997). The effect of installation activities and fire exposure on geogrid performance. Geotextiles and Geomembranes. 1997. No. 15(4-6). pp. 367-376.
  • Carter G.R., Dixon J.H. (1995). Oriented polymer grid reinforcement. Construction and Building Materials.1995. No. 9(6). pp. 389-401.
  • Jeon H.Y., Lyoo W.S. Engineering performance evaluation of PVA geotextiles. 12th International Conference on Computer Methods and Advances in Geomechanics. 2008. No. 5. pp. 3604-3611.
  • Pinho-Lopes M., Paul A.M., Lopes M.L. (2016). Soil-geosynthetic interaction in pullout and inclined-plane shear for two geosynthetics exhumed after installation damage. Geosynthetics International. 2016. No. 23(5). pp. 331347.
  • Ma Q., Xing W.-W., Li L.-H., Xiao H.-L. (2016). Effectiveness of geogrid reinforcement in splicing region in embankment widening. Electronic Journal of Geotechnical Engineering. 2016. No. 21 (16). pp. 5193-5201.
  • Razaqpur A. Ghani, Bauer, Gunther E., Halim Abdel O.A., Zhao, Yijun. (1993). Pullout resistance and load-slip response of mechanically damage geogrids. ASTM Special Technical Publication. 1993. No. (1190). pp. 195206.
  • Stehr J., Barmag O. (2008). Geotextiles and geogrids an innovative process chain. International Fiber Journal. 2008. No. 23(3). pp. 50-51.
  • Lou C.-W., Huang C.-L., Hsing W.-H., Tsai M.-C., Lin J.-H. (2016). High strength polyester/polypropylene geogrids: manufacturing techniques and application evaluations. Journal of the Textile Institute. 2016. No. pp. 18.
  • Mosallanezhad M., Alfaro M.C., Hataf N., Sadat Taghavi S.H. (2016). Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil. Geotextiles and Geomembranes. 2016. No. (3). pp. 457-462.
  • Hsiehl C.W., Lee K., Yoo H.K., Jeo, H. (2008). Tensile creep behavior of polyester geogrids by conventional and accelerated test methods. Fibers and Polymers. 2008. No. 9(4). pp. 476-480.
  • Zou C., Wang Y., Lin J., Chen Y. (2002). Creep behaviors and constitutive model for high density polyethylene geogrid and its application to reinforced soil retaining wall on soft soil foundation. Construction and Building Materials. 2002. No. 114. pp. 763-771.
  • Ouria A.A, Toufigh V.B, Desai C.C, Toufigh V.C, Saadatmanesh H.D. (2016). Finite element analysis of a CFRP reinforced retaining wall. Geomechanics and Engineering.2016. No. 10(6). pp. 757-774.
  • Wang H., Yang G., Liu H., Liu W., Wu L. (2016). Research on dynamic behavior of geogrid reinforced soil retaining wall with wrapped face. Tiedao Xuebao/Journal of the China Railway Society.2016. No. 38(2). pp. 131140.
  • Tian Q.B. (2015). The application research of geogrids in road broadening engineering. Resources, Environment and Engineering -2nd Technical Congress on Resources, Environment and Engineering, CREE.2015. pp. 163168.
  • Wayne M.H. (2016). The Use of Geogrids for the Development of Mechanically Stabilized Layers. Geotechnical Special Publication. 2016.pp. 49-60.
  • Onur M.I., Tuncan M., Evirgen B., Ozdemir B., Tuncan A. (2016). Behavior of Soil Reinforcements in Slopes. Procedia Engineering. 2016. No. 143. pp. 483-489.
  • Müller W. (2014). Long-term pull-out resistance and material properties of geogrids. 10th International Conference on Geosynthetics. 2014. No. ICG 2014.
  • Korulla M., Gharpure A., Rimoldi P. (2015). Design of Geogrids for Road Base Stabilization. Indian Geotechnical Journal. 2015. No. 45 (4). pp. 458-471.
  • Sannikov S., Kuyukov S., Kubasov D. (2016). Increase of a Roadway Covering Durability by Using the CementConcrete Base Fragmented with the Geogrid. MATEC Web of Conferences. 2016. No.73.
  • Hussaini S.K., Indraratna B., Vinod J.S.b. (2016). A laboratory investigation to assess the functioning of railway ballast with and without geogrids. Transportation Geotechnics. 2016. No. 6. pp. 45-54
  • Hegde A., Kadabinakatti S., Sitharam, T.G. (2016). Use of Geocells to Protect Buried Pipelines and Underground Utilities in Soft Clayey Soils. Geotechnical Special Publication. 2016. pp. 914-924.
  • Hegde A., Kadabinakatti S., Sitharam, T.G. (2016). Use of Geocells to Protect Buried Pipelines and Underground Utilities in Soft Clayey Soils. Geotechnical Special Publication. 2016. pp. 914-924.
  • Allen S.R. (2015). Geotextile durability. Geotextiles: From Design to Applications.2016. pp. 177-215.
  • Lopes M.P., Paula A.M., Lopes M.L. (2015). Pullout response of geogrids after installation. Geosynthetics International. 2015. No. 22(5). pp. 339-354.
  • Peng F.-L., Li F.-L., Tan Y., Kongkitkul W. (2010). Effects of loading rate on viscoplastic properties of polymer geosynthetics and its constitutive modeling. Polymer Engineering and Science. 2010. No. 50 (3). pp. 550-560.
  • Zhang Z., Zhu D.Y., Chen T.F., Wang T. (2014). Confined-accelerated creep tests to determine the creep reduction factor. Applied Mechanics and Materials. 2014. No. 539. pp. 769-773.
  • Yoo H., Jeon H.-Y., Chan Y.-C. (2010). Evaluation of Engineering Properties of Geogrids for Soil Retaining Walls. Textile Research Journal. 2010. No. 80 (2). pp. 184-192.
  • ISO/TR 20432:2007 Guidelines for the determination of the long-term strength of goesynthetics for soil reinforcement.
  • Xu S., Zhang Y, Wang Z. (2011). Evaluation on stress relaxation properties of geomembrane. Advanced Materials Research. 2011. pp. 1572-1576.
  • Jeon H. Y, An B. W., Kim, H. J., Kim Y. J., Cui G. Y., Jang Y. S. (2008). Stress relaxation behaviors of nonwoven geotextile composites. Geosynthetics in Civil and Enviromental Engineering -Geosynthetics Asia 2008: Proceedings of the 4th Asian Regional Conference on Geosynthetics. 2008. pp 20-24.
  • França F.A.N., Bueno B.S. (2011). Creep behavior of geosynthetics using confined-accelerated tests. Geosynthetics International. 2011. No. 18(5). pp. 242-254
  • Luo W. (2008). Accelerated characterization of creep behavior of plastic geogrids. Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering). 2008. No. 30 (2). pp. 282-284.
  • Loginova I.I., Artamonova D.A., Stolyarov O.N., Melnikov B.Ye. Vliyaniye struktury na vyazkouprugiye svoystva geosinteticheskikh materialov//Inzhenerno-stroitelnyy zhurnal. 2015. №4(56). S. 11-18.
  • De Mello. (2015). Influence of soil confinement on the creep behavior of geotextiles. Geotextiles and Geomembranes. 2015. No. 43(4). pp. 351-358.
  • Zhang Z., Wei H. (2015). Time-temperature superposition creep tests on geogrids considered with confined load to determine creep reduction factor. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering. 2015. No. 34. pp. 2715-2720.
  • Zhang Z. (2014). Experimental study on the influence of temperature and confined load on the creep characteristics of geogrid. Advanced Materials Research. 2014. pp. 1629-1632.
  • Kongkitkul W., Hirakawa D., Tatsuoka F. (2007). Viscous behaviour of geogrids; Experiment and simulation. Soils and Foundations. 2007. No. 47(2). pp. 265-283.
  • Xiao C., Luan M., Yang Q., Pei J. (2006). An experimental study on creep behaviour and hyperbolic constitutive model of geogrids with applications. Geotechnical Special Publication. 2006. No. 152. pp. 281-286.
  • Cho S.D., Lee K.W., Cazzuffi D.A., Jeon H.Y. (2006). Evaluation of combination effects of installation damage and creep behavior on long-term design strength of geogrids. Polymer Testing. 2006. No. 25(6). pp. 819-828.
  • Guo J. H., Cheng W.-G., Zhang B. (2009). Research on creep property of geogrids at a low temperature. Yantu Lixue/Rock and Soil Mechanics. 2009. No. 30 (10). pp. 3009-3012.
  • Navarrete F., Reddy D.V., Lai P. (2001). Creep of geogrid reinforcement for retaining wall backfills. Geosynthetics Conference. 2001. pp. 567-578.
  • Zou C., Wang Y., Lin J., Chen Y. (2002). Creep behaviors and constitutive model for high density polyethylene geogrid and its application to reinforced soil retaining wall on soft soil foundation. Construction and Building Materials. 2002. No. 114. pp. 763-771.
  • Zou C., Wang Y., Lin J., Chen Y. (2016). Creep behaviors and constitutive model for high density polyethylene geogrid and its application to reinforced soil retaing wall on soft soil foundation. Construction and Building Materials. 2016. No. 114. pp. 763-771.
  • Hsuan Y.G., Yeo S.S. (2005). Comparing the creep behavior of high density polyethylene geogrid using two accereration methods. Geotechnical Special Publication. 2005. (130-142). pp. 2887-2901.
  • Koo H. J., Kim Y. K. (2005). Lifetime prediction of geogrids for reinforcement of embankments and slopes. Polymer Testing. 2005. No. 24(2). pp. 181-188.
  • Tong J., Gong B., Liu J. (2010). Experimental study and prediction on the long-term creep properties for geogrids at different temperatures. 9th International Conference on Geosynthetics -Geosynthetics: Advanced Solutions for a Challenging World. 2010. pp. 873-876.
  • Rowe R.K., Li A.L. (2005). Geosynthetic-reinforced embankments over soft foundations. Geosynthetics International. 2005. No. 12(1). pp. 50-85.
  • Navarrete F., Reddy D.V., Lai P. (2001). Creep of geogrid reinforcement for retaining wall backfills. Geosynthetics Conference. 2001. pp. 567-578.
  • Jin Y.C., Jeon H.Y. (2014). Analysis of creep deformation behavior of geogrids by limited creep strain and rupture. 10th International Conference on Geosynthetics. 2014.
  • Wang H., Yang G., Liu H., Liu W., Wu L. (2016). Research on dynamic behavior of geogrid reinforced soil retaining wall with wrapped face. Tiedao Xuebao/Journal of the China Railway Society. 2016. No. 38(2). pp. 131140.
  • Chantachot T.A, Kongkitkul W.A, Tatsuoka F.B. (2016). Load-strain-time behaviors of two polymer geogrids affected by temperature. International Journal of GEOMATE. 2016. No. 10(3). pp. 1896-1876.
  • Miyata Y., Bathurst R.J., Allen T.M. (2014). Reliability analysis of geogrid creep data in Japan. Soils and Foundations. 2014. No. 54 (4). pp. 608-620.
  • Jeon H.Y., Bouazza A. (2010). Experimental investigation of installation damage for geogrids. Proceedings of the Institution of Civil Engineers: Ground Improvement. 2010. No. 163(4). pp. 197-205.
  • Yeo S.S., Hsuan Y.G. (2010). Evaluation of creep behavior of high density polyethylene and polyethyleneterephthalate geogrids. Geotextiles and Geomembranes. 2010. No. 28(5). pp. 409-421.
  • Yan Q.R., Deng W.D., Deng C.Z. (2008). Study on creep strength test of high-strength geogrid. Geosynthetics in Civil and Environmental Engineering -Geosynthetics Asia 2008: Proceedings of the 4th Asian Regional Conference on Geosynthetics. 2008. pp. 105-109.
  • Luan M., Xiao C., Yang, Q., Pei J., Li Y. (2006). An experimental study on the creep behavior of geogrids under long-term external loading. Tumu Gongcheng Xuebao/China Civil Engineering Journal. 2006. No. 39 (4). pp. 8791.
  • Tong J., Gong B., Liu J. (2010). Experimental study and prediction on the long-term creep properties for geogrids at different temperatures. 9th International Conference on Geosynthetics -Geosynthetics: Advanced Solutions for a Challenging World. 2010. pp. 873-876.
  • Yeo S.S., Hsuan Y.G. (2010). Predicting the creep behavior of high density polyethylene geogrid using stepped isothermal method. Service Life Prediction of Polymeric Materials: Global Perspectives. 2010. pp. 205-218.
  • Luo W. (2008). Accelerated characterization of creep behavior of plastic geogrids. Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering). 2008. No. 30(2). pp. 282-284.
  • Hsiehl C.W. (2005). Ongoing geosynthetics researches of GSI-Taiwan. Geotechnical Special Publication. 2005. (130-142). pp. 3955-3961.
  • Hsuan Y.G., Yeo S.S. (2005). Comparing the creep behavior of high density polyethylene geogrid using two accereration methods. Geotechnical Special Publication. 2005. (130-142). pp. 2887-2901.
  • Luan M.T., Xiao C.Z., Yang Q., Pei J.J. (2005). Experimental study on creep properties and viscoelasticity constitutive relationship for geogrids. Yantu Lixue/Rock and Soil Mechanics. 2005. No. 26(2). pp. 187-192.
  • Sieira A.C., Sayão A.S. (2009). Experimental investigation of mechanical damage in geogrids//Soils and Rocks. 2009. No. 32(1). pp. 19-30.
  • Peng F.L., Li F.L., Hirakawa D., Tatsuoka F. (2011). Deformation and strength characteristics of geogridreinforced soil retaining wall under change of loading rate and its FEM simulation. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering. 2011. No. 33(2). pp. 174-180.
  • Jeon H.Y. (2010). Evaluation of long-term behaviours of geogrids: A review. Proceedings of the Institution of Civil Engineers: Ground Improvement. 2010. No. 163(4). pp. 189-195.
  • Wang E.L., Xu E.L., Zhang B., Zhong H., Gao Z.K., Chang J.D. (2008). Experimental study on creep properties of plastic geogrid under low temperature. Geosynthetics in Civil and Environmental Engineering -Geosynthetics Asia 2008: Proceedings of the 4th Asian Regional Conference on Geosynthetics. 2008. pp. 70-73.
Еще
Статья обзорная