Влияние биоугля на развитие яровой пшеницы (Triticum aestivum L.) и кислотность дерново-подзолистой почвы в Западной Сибири
Автор: Пономарев К. О., Первушина А. Н., Коротаева К. С., Юртаев А. А., Петухов А. С., Табакаев Р. Б., Шаненков И. И.
Журнал: Бюллетень Почвенного института им. В.В. Докучаева @byulleten-esoil
Рубрика: Статьи
Статья в выпуске: 113, 2022 года.
Бесплатный доступ
Цель исследования состояла в установлении влияния внесения в почву биоуглей, полученных из разных, характерных для Западной Сибири органических отходов сельского хозяйства (коровий навоз, солома), деревообрабатывающей (сосновые опилки) и пищевой промышленности (скорлупа кедрового ореха) на морфометрические характеристики растений (на примере яровой пшеницы (Triticum aestivum L.)) и свойства дерново-подзолистой почвы. Оценка влияния осуществлялась в ходе проведения вегетационных экспериментов с использованием климатических камер. В результате вегетационных исследований установлено, что внесение всех отмеченных видов биоуглей в слой почвы приводит к достоверному (p
Органические отходы, биоугольный мелиорант, вегетационный опыт, морфометрические показатели пшеницы, почвенные свойства
Короткий адрес: https://sciup.org/143179661
IDR: 143179661 | DOI: 10.19047/0136-1694-2022-113-110-137
Список литературы Влияние биоугля на развитие яровой пшеницы (Triticum aestivum L.) и кислотность дерново-подзолистой почвы в Западной Сибири
- Алферов А.А. Ассоциативный азот, урожай и устойчивость агроэкосистемы. М.: РАН, 2020. 184 с. https://doi.org/10.25680/VNIIA.2019.21.92.152.
- Балашов Е.В., Рижия Е.Я. Влияние биоугля на плотность сложения и водоудерживающую способность супесчаной дерново-подзолистой почвы разной степени окультуренности // Агрофизика. 2020. № 2. С. 1-9. https://doi.org/10.25695/AGRPH.2020.02.01.
- Гвоздецкий Н.А. Физико-географическое районирование Тюменской области. М.: Изд-во Московского университета, 1973. 246 с.
- Капитонова О.А., Аксарина К.Ю. О некоторых физико-химических свойствах почв песчаных обнажений северных районов Западной Сибири // Динамика окружающей среды и глобальные изменения климата. 2019. Т. 10. № 1. С. 28-38. https://doi.org/10.17816/edgcc10533.
- Литвинович А.В., Хаммам А.А.М., Лаврищев А.В., Павлова О.Ю. Мелиоративные свойства и удобрительная ценность различных по размеру фракций биоугля (по данным лабораторных экспериментов) // Агрохимия. 2016. № 9. C. 46-53.
- Новохатин В.В. Биоклиматические ресурсы Северного Зауралья // Аграрный вестник Урала. 2015. № 8 (138). С. 22-28
- Adeodun S.A., Sangodoyin A.Y., Ogundiran M.B. Optimisation of biochar yield from sorted wood wastes as sustainable alternatives to burning to ash // Ecological Chemistry and Engineering S. 2022. Vol. 29. No. 1. P. 15-26. https://doi.org/10.2478/eces-2022-0003.
- Agbede T.M., Oyewumi A. Benefits of biochar, poultry manure and biochar-poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils // Resources, Environment and Sustainability. 2022. Vol. 7. P. 100051. https://doi.org/10.1016/j.resenv.2022.100051.
- Ahmadou A., Napoli A., Durand N., Montet D. High physical properties of cashew nut shell biochars in the adsorbtion of mycotoxins // International Journal of Food Research. 2019. Vol. 6. P. 18-28. https://doi.org/10.2478/eces-2022-0003.
- Amin A.E.E.A.Z. Bagasse pith-vinasse biochar effects on carbon emission and nutrient release in calcareous sandy soil // Journal of Soil Science and Plant Nutrition. 2020. Vol. 20. No. 1. P. 220-231. https://doi.org/10.1007/s42729-019-00125-9.
- Baiamonte G., De Pasquale C., Marsala V., Cimò G., Alonzo G., Crescimanno G., Conte P. Structure alteration of a sandy-clay soil by biochar amendments // Journal of Soils and Sediments. 2015. Vol. 15. No. 4. P. 816-824. https://doi.org/10.1007/s11368-014-0960-y.
- Beusch C. Biochar as a soil ameliorant: how biochar properties benefit soil fertility - a review // Journal of Geoscience and Environment Protection. 2021. Vol. 09. No. 10. P. 28-46. https://doi.org/10.4236/gep.2021.910003.
- Cantrell K.B., Hunt P.G., Uchimiya M., Novak J.M., Ro K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar // Bioresource Technology. 2012. Vol. 107. P. 419-428. https://doi.org/10.1016/j.biortech.2011.11.084.
- Cornelissen G., Jubaedah, Nurida N.L., Hale S.E., Martinsen V., Silvani L., Mulder J. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol // Science of the Total Environment. 2018. Vol. 634. No. 0806. P. 561-568. https://doi.org/10.1016/j.scitotenv.2018.03.380.
- Dubrovina I.A. Effects of biochar on the agrochemical indicators and enzyme activity of soils in the middle taiga of Karelia // Eurasian Soil Science. 2021. Vol. 54. No. 12. P. 1957-1966. https://doi.org/10.1134/S106422932112005X.
- Gabhane J.W., Bhange V.P., Patil P.D., Bankar S.T., Kumar S. Recent trends in biochar production methods and its application as a soil health conditioner: a review // SN Applied Sciences. 2020. Vol. 2. No. 7. P. 1-21. https://doi.org/10.1007/s42452-020-3121-5.
- Geng N., Kang X., Yan X., Yin N., Wang H., Pan H., Yang Q., Lou Y., Zhuge Y. Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature // Ecotoxicology and Environmental Safety. 2022. Vol. 232. P. 113241. https://doi.org/10.1016/j.ecoenv.2022.113241.
- Graber E.R., Harel Y.M., Kolton M., Cytryn E., Silber A., David D.R., Tsechansky L., Borenshtein M., Elad Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media // Plant and Soil. 2010. Vol. 337. No. 1. P. 481-496. https://doi.org/10.1007/s11104-010-0544-6.
- Griffin D.E., Wang D., Parikh S.J., Scow K.M. Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment // Agriculture, Ecosystems and Environment. 2017. Vol. 236. P. 21-29. https://doi.org/10.1016/j.agee.2016.11.002.
- He L., Liu Y., Zhao J., Bi Y., Zhao X., Wang S., Xing G. Comparison of straw-biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols // Biology and Fertility of Soils. 2016. Vol. 52. No. 2. P. 137-149. https://doi.org/10.1007/s00374-015-1059-3.
- Igalavithana A.D., Choi S.W., Shang J., Hanif A., Dissanayake P.D., Tsang D.C.W., Kwon J.H., Lee K.B., Ok Y.S. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry // Science of the Total Environment. 2020. Vol. 739. P. 139845. https://doi.org/10.1016/j.scitotenv.2020.139845.
- Igaz D., Šimanský V., Horák J., Kondrlová E., Domanová J., Rodný M., Buchkina N.P. Can a single dose of biochar affect selected soil physical and chemical characteristics? // Journal of Hydrology and Hydromechanics. 2018. Vol. 66. No. 4. P. 421-428. https://doi.org/10.2478/johh-2018-0034.
- Jabborova D., Ma H., Bellingrath-Kimura S.D., Wirth S. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities // Scientia Horticulturae. 2021. Vol. 290. P. 110518. https://doi.org/10.1016/j.scienta.2021.110518.
- Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H., Murphy D.V. Biochar-mediated changes in soil quality and plant growth in a three-year field trial // Soil Biology and Biochemistry. 2012. Vol. 45. P. 113-124. https://doi.org/10.1016/j.soilbio.2011.10.012.
- Joseph S., Cowie A.L., Van Zwieten L., Bolan N., Budai A., Buss W., Cayuela M.L., Graber E.R., Ippolito J.A., Kuzyakov Y., Luo Y., Ok Y.S., Palansooriya K.N., Shepherd J., Stephens S., Weng Z., Lehmann J. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar // GCB Bioenergy. 2021. Vol. 13. No. 11. P. 1731-1764. https://doi.org/10.1111/gcbb.12885.
- Juriga M., Aydln E., Horák J., Chlpík J., Rizhiya E.Y., Buchkina N.P., Balashov E.V., Šimanský V. The importance of initial application and reapplication of biochar in the context of soil structure improvement // Journal of Hydrology and Hydromechanics. 2021. Vol. 69. No. 1. P. 87-97. https://doi.org/10.2478/johh-2020-0044.
- Juriga M., Šimanský V. Effects of biochar and its reapplication on soil pH and sorption properties of silt loam haplic Luvisol // Acta Horticulturae et Regiotecturae. 2019. Vol. 22. No. 2. P. 65-70. https://doi.org/10.2478/ahr-2019-0012.
- Kapitonova O.A., Aksarina K.Y., Yu A.K. On some physical and chemical properties of soils of sandy outcrops of the West Siberian northern regions // Environmental dynamics and global climate change. 2019. Vol. 10. No. 1. P. 28-37. https://doi.org/10.17816/edgcc10533.
- Kumar A., Bhattacharya T., Mukherjee S., Sarkar B. A perspective on biochar for repairing damages in the soil-plant system caused by climate change-driven extreme weather events // Biochar. 2022. Vol. 4. No. 1. P. 1-23. https://doi.org/10.1007/s42773-022-00148-z.
- Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. Biochar effects on soil biota - A review // Soil biology and biochemistry. 2011. Vol. 43. No. 9. P. 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022.
- Leng L., Huang H., Li H., Li J., Zhou W. Biochar stability assessment methods: A review // Science of the Total Environment. 2019. Vol. 647. P. 210-222. https://doi.org/10.1016/j.scitotenv.2018.07.402.
- Meschewski E., Holm N., Sharma B.K., Spokas K., Minalt N., Kelly J.J. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth // Chemosphere. 2019. Vol. 228. P. 565-576. https://doi.org/10.1016/j.chemosphere.2019.04.031.
- Mohan D., Abhishek K., Sarswat A., Patel M., Singh P., Pittman C.U. Biochar production and applications in soil fertility and carbon sequestration - a sustainable solution to crop-residue burning in India // RSC Advances. 2018. Vol. 8. No. 1. P. 508-520. https://doi.org/10.1039/c7ra10353k.
- Novak J.M., Busscher W.J., Watts D.W., Laird D.A., Ahmedna M.A., Niandou M.A.S. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult // Geoderma. 2010. Vol. 154. No. 3-4. P. 281-288. https://doi.org/10.1016/j.geoderma.2009.10.014.
- Raza S., Zamanian K., Ullah S., Kuzyakov Y., Virto I., Zhou J. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation // Journal of Cleaner Production. 2021. Vol. 315. P. 128036. https://doi.org/10.1016/j.jclepro.2021.128036.
- Ren X., Yuan X., Sun H. Dynamic changes in atrazine and phenanthrene sorption behaviors during the aging of biochar in soils // Environmental Science and Pollution Research. 2018. Vol. 25. No. 1. P. 81-90. https://doi.org/10.1007/s11356-016-8101-3.
- Rizhiya E.Y., Buchkina N.P., Mukhina I.M., Belinets A.S., Balashov E.V. Effect of biochar on the properties of loamy sand Spodosol soil samples with different fertility levels: A laboratory experiment // Eurasian Soil Science. 2015. Vol. 48. No. 2. P. 192-200. https://doi.org/10.1134/S1064229314120084.
- Sarauer J.L., Page-Dumroese D.S., Coleman M.D. Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests // GCB Bioenergy. 2019. Vol. 11. No. 5. P. 660-671. https://doi.org/10.1111/gcbb.12595.
- Sun Y., Lyu H., Cheng Z., Wang Y., Tang J. Insight into the mechanisms of ball-milled biochar addition on soil tetracycline degradation enhancement: Physicochemical properties and microbial community structure // Chemosphere. 2022. Vol. 291. P. 132691. https://doi.org/10.1016/j.chemosphere.2021.132691.
- Tabakaev R., Ibraeva K., Astafev A., Dubinin Y., Yazykov N., Zavorin A., Yakovlev V. Thermal enrichment of different types of biomass by low-temperature pyrolysis // Fuel. 2019. Vol. 245. P. 29-38. https://doi.org/10.1016/j.fuel.2019.02.049.
- Tangmankongworakoon N. An approach to produce biochar from coffee residue for fuel and soil amendment purpose // International Journal of Recycling of Organic Waste in Agriculture. 2019. Vol. 8. No. 1. P. 37-44. https://doi.org/10.1007/s40093-019-0267-5.
- Wang Y., Yin R., Liu R. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil // Journal of Analytical and Applied Pyrolysis. 2014. Vol. 110. No. 1. P. 375-381. https://doi.org/10.1016/j.jaap.2014.10.006.
- Wardle D.A., Nilsson M.C., Zackrisson O. Fire-derived charcoal causes loss of forest humus // Science. 2008. Vol. 320. No. 5876. P. 629. https://doi.org/10.1126/science.1154960.
- Yao Y., Gao B., Zhang M., Inyang M., Zimmerman A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil // Chemosphere. 2012. Vol. 89. No. 11. P. 1467-1471. https://doi.org/10.1016/j.chemosphere.2012.06.002.
- Zhang D., Yan M., Niu Y., Liu X., van Zwieten L., Chen D., Bian R., Cheng K., Li L., Joseph S., Zheng J., Zhang X., Zheng J., Crowley D., Filley T.R., Pan G. Is current biochar research addressing global soil constraints for sustainable agriculture? // Agriculture, Ecosystems and Environment. 2016. Vol. 226. P. 25-32. https://doi.org/10.1016/j.agee.2016.04.010.
- Zhao L., Cao X., Mašek O., Zimmerman A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures // Journal of Hazardous Materials. 2013. Vol. 256-257. P. 1-9. https://doi.org/10.1016/j.jhazmat.2013.04.015.
- Zhao X., Wang S., Xing G. Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: Laboratory incubation and column leaching studies // Journal of Soils and Sediments. 2014. Vol. 14. No. 3. P. 471-482. https://doi.org/10.1007/s11368-013-0803-2.