Влияние экзогенной абсцизовой кислоты на всхожесть семян и рост проростков озимой пшеницы в условиях стресса цинком

Автор: Васюк В.А., Войтенко Л.В., Щербатюк М.М., Косакивска И.В.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.15, 2019 года.

Бесплатный доступ

Среди тяжелых металлов цинк необходим для роста и развития растений. Он играет важную роль в обмене веществ, имеет решающее значение для действия Zn-зависимых ферментов, участвующих в физиологических процессах. Однако при повышенных концентрациях, как и другие тяжелые металлы, это отрицательно влияет на метаболизм растений. В этой работе мы исследовали, изменяет ли грунтовка абсцизовой кислотой физиологические реакции семян и проростков озимой пшеницы на стресс цинка. Было показано, что при повышенной концентрации цинка обработка снижала всхожесть семян озимой пшеницы сорта Подолянка на 17%. При применении 10-6М раствора АБК всхожесть семян увеличилась на 13,5%. Цинк ингибировал рост побегов и корней проростков. Корни были более чувствительны к действию цинка. Негативное влияние металла выравнивалось при добавлении АБК, и на седьмой день регистрировалось стимулирующее влияние гормона на рост корня. Инкубация в растворах цинка оказала негативное влияние на накопление свежей биомассы проростками пшеницы. При переходе растений от гетеротрофного к автотрофному питанию сухая биомасса уменьшилась, но на седьмой день растительность на смеси растворов гормонов - тяжелых металлов несколько уменьшилась и произошла максимальная сухая биомасса. Таким образом, экзогенное применение АБК несколько уменьшило негативное влияние цинка на всхожесть семян и рост корней озимой пшеницы и улучшило защиту от токсичности тяжелых металлов.

Еще

Короткий адрес: https://sciup.org/143166908

IDR: 143166908

Список литературы Влияние экзогенной абсцизовой кислоты на всхожесть семян и рост проростков озимой пшеницы в условиях стресса цинком

  • Alloway B.J. (2008) Zinc in Soils and Crop Nutrition, 3th ed. International Zinc Association, Brussels, Belgium. 137p
  • Bartels D., Sunkar R. (2005) Drought and salt tolerance in Plants. CRC Crit. Rev. Plant Sci., 24, 23-58
  • Bielen A., Remans T., Vangronsveld J., Cuypers A. (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int. J. Mol. Sci., 14, 6382-6413
  • Brown P.H., Cakman I., Zhang O. (1993) From and Function of Zinc Plants//In Robson A.D. (Ed.) Zinc in Soils and Plants. Developments in Plant and Soil Sciences, Springer, Dordrecht, Chapter, 55, 93-106
  • Bücker-Neto L., Paiva A.L.S., Machado R.D., Arenhart R.A., Margis-Pinheiro M. (2017) Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol., 40, 373-386
  • Cakmak I. (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol., 146, 185-205
  • Castillo-Gonzales J., Ojeda-Barrios D, Hernández-Rodríguez А., González-Franco А.С., Robles-Hernández L., López-Ochoa G.R.(2018) Zinc metalloenzymes in plant. Interciencia, 43(4), 242-248
  • Danquah A., de Zelicourt A., Colcombet J., Hirt H. (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv., 32, 40-52
  • Figueiredo D.D., Barros P.M., Cordeiro A.M., Serra T.S., Lourenзo T., Chander S., Oliveira M.M., Saibo N.J. (2012) Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J. Exp.Bot., 63, 3643-3656
  • Finkelstein R. (2013) Abscisic acid synthesis and response. Arabidopsis Book. 11. e0166
  • Gautam S., Anjani K., Srivastava N. (2016) In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiol. Mol. Biol. Plants, 22, 121-129
  • Graeber K., Linkies A., Muller K., Wunchova A., Rott A., Leubner-Metzger G. (2010) Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol. Biol., 73, 67-87
  • Gill P.K., Sharma A.D., Singh P., Bhullar S.S. (2003). Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regulation, 40, 157-162
  • Hafeez B., Khanif Y.M., Saleem M. (2013) Role of zinc in plant nutrition. Amer. J. Exp. Agriculture, 3(2), 374-391
  • Ivanov Y.V., Kartashov A.V., Ivanova A.I., Savochkin Y.V., Kuznetsov V.V. (2016) Effects of zinc on Scots pine (Pinus sylvestris L.) seedlings grown in hydroculture. Plant Physiol. Biochem., 102, 1-9
  • Jain R., Strivastava S., Solomon S., Chrivastava A.K., Chandra A. (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol. Plant., 32, 979-986
  • Kanwar M.K., Bhardwaj R., Chowdhary S.P., Arora P., Sharma Priyanka, Kumar S. (2013) Isolation and characterization of 24-Epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defence of Brassica plants and in vitro cytotoxicity. Acta Physiol. Plant., 35, 1351-1362
  • Kaznina N.M., Laidinen G.F., Titov A.F., Talanov A.V. (2005) Effect of lead on the photosynthetic apparatus of annual grasses. Biology bull. 32(2), 147-150
  • Kaznina N.M., Titov A.F., Laidinen G.F., Batova Y.V. (2010) Vlijanie tsinka na produktivnost’ jarovogo jachmenja v vegetatsionnom opyte. Agrochimija, 8, 72-76.
  • Kaznina N.M., Titov A.F. (2017) Effect of Zinc Deficiency and Excess on the Growth and Photosynthesis of Winter Wheat. J. Stress Physiol. Biochem., 13, 88-94.
  • Kosakivska I.V., Vasyuk V.A., Voytenko L.V. (2019) Effects of endogenous abscisic acid on seed germination and morphological characteristics of two related wheats Triticum aestivum L. and Triticum spelta L. Fiziol. Rast. Genet., 51, 55-66. 10.15407/frg2019.01.055
  • DOI: :10.15407/frg2019.01.055
  • Kösesakal T., Ünal M. (2012) Effects of zinc toxicity on seed germination and plant growth in tomato (Lycopersicon esculentum Mill.). Fresenius Environmental Bulletin, 21 (2), 315-324
  • Kots S.Y., Peterson N.V. (2005). Mineral elements and fertilizers in plant nutrition. Kyiv, Logos, 150 p.
  • Lee M., Lee K., Lee J., Noh E.W., Lee Y. (2005) AtPDR12 Contributes to lead resistance in Arabidopsis. Plant Physiol., 138, 827-836
  • Madhava Rao K.V., Sresty T.V.S. (2000) Antioxidative parameters in seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stress. Plant Sci., 157, 113-128
  • Mahmood S., Hussain A., Saeed Z., Athar M. (2005) Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. Int. J. Environ. Sci. Tech., 2, 269-274
  • Mathur S., Kalaji H.M., Jajoo A. (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica, 54, 1-9
  • Muhei S.H. (2018) Seed Priming with Phytohormones to Improve Germination Under Dormant and Abiotic Stress Conditions. Adv. Crop Sci. Tech., 6, 403
  • DOI: 10.4172/2329-8863.1000403
  • Mukhopadhyay M., Mondal T.K. (2015) Effect of zinc and boron on growth and water relations of Camellia sinensis (L.) O. Kuntze cv. T-78. Natl. Acad. Sci. Lett., 38 (3), 283-286
  • Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., Kamiya Y. (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res., 20, 55-67
  • Olds C.L., Glennon E.K.K., Luckhart S. (2018) Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes and Infection, 34, 1-40
  • Pandolfini T., Gabbrielli R., Ciscato M. (1996) Nickel toxicity in two durum wheat cultivars differing in drought sensitivity. J. Plant Nutr., 19, 1611-1627
  • Pantin F., Monnet F., Jannaud D., Costa J.M., Renaud J., Muller B., Simonneau T., Genty B. (2013) The dual effect of abscisic acid on stomata. New Phytol., 197, 65-72. 10.1111/nph.12013
  • DOI: :10.1111/nph.12013
  • Peralta J.R., Gardea-Torresdey J.L., Tiemann K.J., Gomez E., Arteaga S., Rascon E., Parsons J.G. (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol., 66, 727-734
  • Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. (2002) Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J., 32, 539-548
  • Powell M.J., Davies M.S. Francis D. (1986) The influence of zinc on the cell cycle in the root meristem of a zinctolerant and a non-tolerant cultivar of Festuca rubra L. New Phytol., 102, 419-428
  • Rachmanculova Z.F., Fediaev V.V., Abdullina О.А., Usmanov I.U. (2008) Formirovanie adaptacionnih mehanizmov u phenizi i kukuruzi k povishennomu codershaniu zinca. Vestnik Bahkirskogo yniversiteta, 13(1), 43-46.
  • Rajewska I., Talarek M., Bajguz A. (2016) Brassinosteroids and Response of Plants to Heavy Metals Action. Front. Plant Sci., 7, 1-5
  • Rauser W.E., Dumbroff E.B. (1981) Effects of excess cobalt, nickel and zinc on the water relations of Phaseolus vulgaris. Environ. Exp. Bot., 21, 249-255
  • Recatala L., Peris M., Sa J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863-872
  • Ren C., Bewley J.D. (1999) Developmental and Germinative Events can Occure Concurrently in Precociously Germinating Chinese Cabbage (Brassica rapa ssp. Pekinensis) Seeds. J. Exp. Botany, 50, 341, 1751-1761
  • Roy L.M., McDonald L.M. (2015) Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad. Dev., 26, 785-792
  • Rubio M.I., Escrig I., Martinez-Cortina C., Lopez-Benet F.J., Sanz A. (1994) Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul., 14, 151-157
  • Sah S.K., Reddy K.R., Li J. (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci., 7, 1-26
  • Seregin I.V., Kozhevnikova A.D., Gracheva E.I., Bystrova E.I., Ivanov V.B. (2011) Tissue zinc distribution in maize seedling roots and its action on growth. Rus. J. Plant Physiol., 58(1), 109-117
  • Svitowyi V.M., Gerkiyal O.M., Zhilyak I.D. (2014). Zinc and cupro in the podzolic chernozem and winter wheat grown on it. Bulletin of the Dnipropetrovsk State Agrarian-Economic Univ., 34 (2), 169-171.
  • Tandon S.A., Kumar R., Parsana S. (2015) Auxin treatment of wetland and non-wetland plant species to enhance their phytoremediation efficiency to treat municipal wastewater. J. Sci. Ind. Res., 74, 702-707
  • Tooro P.E., Van Aelst A.C., Hilhors H.W.M. (2000) The Second Step of the Biphasic Endosperm Cap Weakening that Mediates Tomato (Lycopersicon esculentum) Seed Germination is Under Control of ABA. J. Exp. Bot., 51(349), 1371-1379
  • Vaieretti M.V., Di´az S., Vile D., Garnier E. (2007) Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species. Annals of Botany, 99, 955-958
  • DOI: 10.1093/aob/mcm022
  • Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R., Kumar V., Verma R., Upadhyay R.G., Pandey M., Sharma S. (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. plant sci., 28, 161-173
  • Wang Y., Wang Y., Kai W., Zhao B., Chen P., Sun L., Ji K., Li Q., Dai S., Sun Y., Wang Y., Pei Y., Leng P. (2014) Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn2+, NaCl and simulated acid rain stresses. Plant Physiol. Biochem., 76, 67-76
  • Wilkinson S., Davies W.J. (2002) ABA-based chemical signalling: The co-ordination of responses to stress in plants. Plant Cell Environ., 25, 195-210
  • Wilson P.J., Thompson K., Hodgson J.G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162
  • Xiong L., Zhu J.-K. (2003) Regulation of Abscisic acid Biosynthesis. Plant Physiol., 133, 29-36
  • Zhu X.F., Wang Z.W., Dong F., Lei G.J., Shi Y.Z., Li G.X., Zheng S.J. (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J. Hazard. Mater., 263, 398-403
Еще
Статья научная