Influence of cinematic and technological parameters of rotary turning by multifaceted cutters on chip formation and surface roughness
Автор: Indakov N.S., Gordeev Yu. I., Binchurov A.S., Kiselev D.I., Jasinski V.B.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Технологические процессы и материалы
Статья в выпуске: 2 т.18, 2017 года.
Бесплатный доступ
By calculated and experimental methods features of the process of turning the rotary multifaceted cutters were investigated. Influence of cutting conditions on the intensity of deformation processes, shape and dimensions of the cross section of cutting layer in the form of chips and roughness of the treated surface were installed. The resulting semi-empirical equations allow the appoint the cutting modes to predict the roughness parameters Ra, Rz, Rmax. The proposed method combines elements of skew turning (in which the cut layer moves along the cutting edge) and rotary turning (in which the sections of the cutting edge are constantly renewed). That leads to better cooling and hence longer tool life. The required cutting speed is ensured by selection of the cutter speed; the rotation of the machined shaft corresponds to the azimuthal supply. In the proposed method, the cut width is variable and corresponds to the section of the cutter profile with an increasing radius vector, while the cutting depth varies in the vertical plane of the cut. On the basis of the cutting kinematics, kinematic undulation may appear. To eliminate that, the longitudinal and azimuthal supply must be specified in accordance with our recommendations. Carrying out the corresponding researches allows revealing optimum modes of processing and to make practical recommendations about their choice for various conditions and materials. In general, studies have confirmed the promise of the proposed method.
Rotational turning, versatile rotary cutter, blade, constructive feed, circular feed, chip control, chip removal, the angles of inclination
Короткий адрес: https://sciup.org/148177712
IDR: 148177712