Влияние начальных и конечных параметров пара на тепловую экономичность паровых турбин

Автор: Гумеров И.Р., Зайнуллин Р.Р.

Журнал: Теория и практика современной науки @modern-j

Рубрика: Основной раздел

Статья в выпуске: 4 (22), 2017 года.

Бесплатный доступ

В статье рассматриваются влияния начальных и конечных параметров (давления и температуры) пара на тепловую экономичность паровых турбин.

Паровая турбина, параметры пара, температура и давление, прочность металла, кпд цикла

Короткий адрес: https://sciup.org/140271244

IDR: 140271244

Текст научной статьи Влияние начальных и конечных параметров пара на тепловую экономичность паровых турбин

Под начальными параметрами пара понимают температуру и давление пара перед паровой турбиной, а соответствующие им параметры пара на выходе из турбины являются конечными параметрами.

Повышение начальных параметров пара позволяет увеличить КПД цикла и располагаемый теплоперепад, что является одним из основных источников экономии топлива на тепловых электростанциях. Повышение начальной температуры пара в цикле Ренкина практически ограничивается прочностными и технологическими свойствами металлов (технология изготовления), надежностью их в работе, а также экономическими условиями, их удорожанием с повышением температуры, в особенности при переходе от одного класса стали к другому, более современному. Так, до температуры 450°C возможно применение углеродистых сталей, до температуры 550°C – слаболегированных сталей перлитного класса, до температуры 660°C – сталей ферритно-мартенситного и аустенитного классов. Переход от каждого из этих классов стали, к следующему жаропрочному и жаростойкому сопровождается повышением их стоимости в 2 – 5 раз [1].

Необходимость перехода к другому классу стали, зависит также от давления пара. Повышение начального давления пара, как правило, способствует повышению КПД цикла водяного пара. Исключение составляет околокритическая область состояния пара, в которой может наблюдаться обратная зависимость – снижение КПД с ростом давления как насыщенного, так и перегретого пара при данной температуре.

Термодинамически наиболее эффективно одновременное повышение начальной температуры и начального давления пара. Если исходить из прочностных свойств металла, то при заданном классе (и марке) стали с повышением начальной температуры приходится снижать начальное давление пара, чтобы обеспечить необходимый уровень надежности оборудования. Такие парные значения начальной температуры и давления, соответствующие одинаковой прочности оборудования, можно назвать равнопрочными начальными параметрами пара. Причем с повышением температуры, с уменьшением плотности пара и ростом его удельного объема уменьшаются потери трения, увеличиваются высоты лопаток, уменьшаются относительные потери из-за протечек пара через зазоры турбинной ступени, снижается конечная влажность пара [2].

Повышение начального давления пара (при данной температуре) позволяет наряду с возможным улучшением тепловой экономичности электростанции увеличить мощность оборудования при допустимых его размерах. Увеличение плотности пара с повышением его давления позволяет существенно увеличить массовый его расход и совершаемую им работу в проточной части турбины, размеры которой ограничиваются конструктивными условиями. Но при этом возрастают потери из-за протечек через зазоры в турбинной ступени, и увеличивается конечная влажность пара [3].

При одних и тех же значениях начальных параметров пара (температуры и давления) снижение конечного давления ведет к увеличению термического КПД цикла Ренкина, так как увеличивается располагаемый теплоперепад турбины. С другой стороны, снижение конечного давления ведет к снижению температуры отвода теплоты в паровом цикле, следовательно, увеличивается термический КПД цикла.

В паротурбинных установках температура отвода теплоты определяется температурой конденсации или давлением пара в конденсаторе. Давление в конденсаторе зависит от температуры и количества охлаждающей воды, температурного напора, удельной паровой нагрузки конденсатора и его эксплуатационного состояния (плотности системы, эффективности отсоса воздуха, чистоты поверхности охлаждения) [4].

С понижением конечного давления значительно увеличивается адиабатный теплоперепад, уменьшается температура отвода теплоты, что приводит к уменьшению потери работоспособности от необратимого теплообмена в конденсаторе и повышению КПД турбины. Конечная температура пара современных крупных конденсационных турбоустановок изменяется в пределах от 24°С до 36°С. Снижение давления с 4 кПа до 2 кПа повышает термический КПД идеального цикла приблизительно на 4%, но при этом увеличивает объем пара приблизительно в 2 раза, что значительно усложняет конструкцию последних ступеней, выхлопных частей турбины и повышает ее стоимость. Большинство отечественных паровых турбин рассчитывается и изготовляется на давление в конденсаторе 3-6 кПа (0,03-0,06 кгс/см2) [5].

Поэтому предел понижения давления определяется соответствующей ему температурой насыщения, которая должна быть не ниже температуры окружающей среды. Иначе не возможна передача теплоты, выделяющейся при конденсации отработавшего в турбине пара. Температура насыщения отработавшего пара определяется температурой охлаждающей воды на входе в конденсатор, ее нагревом и температурным напором. Температура охлаждающей воды зависит от типа водоснабжения конденсатора турбоустановки и климатических условий места расположения тепловой электростанции. Нагрев охлаждающей воды определяется разностью энтальпий отработавшего пара и его конденсата, а также кратностью охлаждения конденсатора.

При эксплуатации турбинной установки обслуживающему персоналу задается экономическое давление в конденсаторе (экономический вакуум), величина которого изменяется в зависимости от изменения температуры охлаждающей воды и пропуска пара в конденсатор. В этом случае сопоставляются увеличение затрат мощности на подачу охлаждающей воды для снижения давления в конденсаторе и повышение мощности турбины при этом. Экономический вакуум должен обеспечивать в итоге максимальный прирост мощности (нетто).

Список литературы Влияние начальных и конечных параметров пара на тепловую экономичность паровых турбин

  • Начальные параметры и промежуточный перегрев пара. [Электронный ресурс] / Режим доступа: http://vunivere.ru/work20121.
  • Перегрев пара. [Электронный ресурс] / Режим доступа: http://studopedia.org/4-65346.html.
  • Гафуров А.М. Возможности использования органического цикла Ренкина для утилизации низкопотенциальной теплоты. // Вестник Казанского государственного энергетического университета. - 2014. - №2 (21). - С. 20-25.
  • Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС. // Вестник Казанского государственного энергетического университета. - 2015. - №4 (28). - С. 28-32.
  • Бродов Ю.М. Теплообменники энергетических установок. Учебное пособие. - Екатеринбург. Издательство «Сократ», 2003. - 965 с.
Статья научная