Влияние отклонений электрических параметров электропередачи на предельное время отключения короткого замыкания по условию устойчивости генераторов системы

Автор: Губин Павел Юрьевич, Тавлинцев Александр Сергеевич

Журнал: Вестник Южно-Уральского государственного университета. Серия: Энергетика @vestnik-susu-power

Рубрика: Электроэнергетика

Статья в выпуске: 2 т.19, 2019 года.

Бесплатный доступ

Непостоянство сопротивлений и проводимостей передач энергосистем обуславливается целым рядом факторов: от неопределенности, вызванной метеорологическими условиями, до естественных ошибок в учете геометрии трасс электропередачи. Тем не менее однозначно судить о том, насколько эти изменения могут сказаться и сказываются на динамической устойчивости, не представляется возможным без дополнительных процедур моделирования и вычислительных экспериментов. Цель данного исследования заключается в оценке влияния возможных отклонений параметров схем замещения линий электропередачи на переходную устойчивость генерирующего оборудования. Для достижения поставленной цели предложено на базе простейшей трехузловой системы смоделировать случайные изменения параметров схем замещения линий электропередачи и произвести множественные расчеты переходных процессов. На первом шаге производился анализ изменения предельного времени при учете отклонений каждого из параметров в отдельности. Далее сопротивления и проводимости линий изменялись уже одновременно, а контролировались траектории параметров режима работы генератора тестовой сети. В заключение был произведен численный анализ собранных данных с целью установления характера зависимости контрольных величин и параметров схемы замещения линии. Проведенный эксперимент выявляет две закономерности. Во-первых, существенными с точки зрения устойчивости оказываются только случайные изменения реактивного продольного сопротивления линии. Кроме того, второй этап эксперимента показывает, что с точки зрения динамического изменения параметров режима случайные изменения параметров схем приводят к существенной неопределенности и рассеиванию траекторий изменения параметров режима. Таким образом, исследование показывает, что исключение из рассмотрения возможных отклонений параметров схем замещения в первом приближении однозначно повлияет на результаты расчетов.

Еще

Параметр линии электропередачи, динамическая устойчивость, нормальный закон распределения, предельное время отключения короткого замыкания

Короткий адрес: https://sciup.org/147232729

IDR: 147232729   |   DOI: 10.14529/power190205

Текст научной статьи Влияние отклонений электрических параметров электропередачи на предельное время отключения короткого замыкания по условию устойчивости генераторов системы

Основной причиной уменьшения экономичности работы котлов являются потери тепловой энергии с уходящими газами. С целью уменьшения потерь с уходящими газами котлов они оснащаются воздухоподогревателями, в которых происходит уменьшение температуры уходящих газов за счет нагрева воздуха, направляемого далее в горелочные устройства котлов. Эффективность теплообмена в воздухоподогревателях котлов зависит от особенностей их конструктивного исполнения. В процессе развития котлостроения проводилась модернизация конструкции проточной части воздухоподогревателей, особенно профиля листов набивки регенеративных воздухоподогревателей, что обеспечивало уменьшение температуры уходящих газов котлов. Проектные величины температуры уходящих газов энергетических котлов с не модернизированными регенеративными воздухоподогревателями (РВП) находятся в диапазоне 130–142 °С [1, 2]. В результате модернизации РВП находящихся в эксплуатации котлов можно понизить температуру уходящих газов максимально примерно до уровня 126–138 °С [3]. Например, на Кармановской ГРЭС она составила для котла блока № 6 около 129 °С в среднем за год. Вместе с тем предельная величина возможного уменьшения температуры уходящих газов котлов, эксплуатируемых на электростанциях, ограничена требованиями обеспечения длительной, безопасной эксплуатации железобетонных и кирпичных дымовых труб и должна быть не менее 100 °С [4]. Таким образом, имеется значительный потенциал энергосбережения, связанный с дальнейшим уменьшением температуры уходящих газов, как сейчас находящихся в эксплуатации котлов, так и вновь выпускаемых промышленностью. Кроме того, в существующих конструкциях котлов нагрев холодного воздуха перед РВП для уменьшения скорости коррозии до безопасного уровня происходит либо за счет включения в работу дополнительного теплообменника, выполненного в виде парового калорифера, горячей средой которого является отборный пар турбин, либо за счет рециркуляции нагретого воздуха. При включении в работу парового калорифера происходит увеличение температуры, как воздуха на входе в РВП, так и температуры уходящих газов, понижающих экономичность работы котла. Согласно «Правилам технической эксплуатации электрических станций и сетей РФ» [5] включение в работу калориферов или линии рециркуляции происходит только при сжигании мазута, а в период сжигания газа калориферы и рециркуляцию воздуха отключают, что приводит в зимний период времени к интенсивной атмосферной коррозии набивки РВП. Например, проведенный расчет поля температур набивки РВП котла блока № 6 на Кармановской ГРЭС при фактическом режиме работы на газовом топливе в зимний период времени выявил, что минимальное значение температуры металла набивки в «холодном слое» за один период оборота ротора РВП достигает примерно 23 °С при температуре холодного воздуха на входе в РВП 7 °С. При даже крат- ковременном периоде сжигания мазута на набивке РВП остаются загрязнения, так как существующими средствами очистки полностью их удалить во время работы котла достаточно сложно. Поэтому после последующего перевода котла на сжигание газа такое низкое значение температуры металла приводит к увеличению скорости повреждений набивки РВП из-за сернокислой коррозии в связи с наличием в загрязнениях набивки РВП после сжигания мазута соединений SO3 [6].

Актуальность темы исследования

Уменьшение потерь тепловой энергии с уходящими газами за счет уменьшения температуры уходящих газов путем модернизации РВП является эффективным мероприятием по повышению уровня энергетической эффективности. В литературе имеются примеры различных технических решений, обеспечивающих повышение эффективности работы РВП [7, 8]. Вместе с тем уменьшение температуры уходящих газов в РВП приводит к уменьшению температуры набивки воздухоподогревателя и, соответственно, к увеличению скорости его коррозионных повреждений. Поэтому представляет интерес провести анализ эффективности применения другого технического решения, при котором использование тепловой энергии дымовых газов при их охлаждении будет использовано для увеличения температуры воздуха на входе в РВП. При этом будет обеспечено повышение КПД котла за счет уменьшения потерь с уходящими газами и повышение надежности работы РВП из-за увеличения температуры листов его набивки.

Обзор исследования авторов

В литературе приведены результаты анализа эффективности технических решений, посвященных решению задачи утилизации тепловой энергии дымовых газов котлов с целью уменьшения их температуры [9–12]. Несмотря на эффективность предлагаемых технических решений, используемых для достижения поставленной цели, они имеют и недостатки. В работах рассмотрены технические решения, при которых тепловая энергия, отводимая от дымовых газов при помощи установленных в газоходе котла теплообменников, использовалась для нагрева воды, далее используемой в целях отопления. Таким образом, задача повышения надежности работы котла путем нагрева воздуха перед РВП до необходимого уровня за счет утилизации тепловой энергии дымовых газов авторами данных работ не решалась. Кроме того, охлаждение дымовых газов предлагалось проводить до температуры ниже точки росы водяных паров, содержащихся в дымовых газах, что делало невозможным использовать данные технические решения при работе котла на мазуте. Причем теплота, переданная дымовыми газами охлаждающей воде, как и сама вода, должны быть по- лезно утилизированы в схеме электростанции, что приводит к уменьшению теплофикационной выработки турбин электростанции. Значительное уменьшение температуры уходящих газов в новом теплообменнике вызывает необходимость выполнения теплообменника и газохода из антикоррозионных материалов [9].

Научная новизна

В связи с вышеизложенным представляет интерес анализ экономической эффективности другого технического решения, которое, по данным авторов, носит оригинальный характер и позволит увеличить не только эффективность, но и надежность работы котла. Для выполнения требования необходимо довести величину охлаждения дымовых газов до предельно низкой температуры, обеспечивающей надежную и безопасную эксплуатацию дымовых труб на электростанции [4] и нагрев воздуха на входе в РВП до температуры выше конденсации водяных паров в дымовых газах. При изменении режима работы котла величина температуры дымовых газов и воздуха может изменяться, поэтому должно быть обеспечено выполнение указанных выше требований к значениям температур при различных нагрузках котла, температуры наружного воздуха и других внешних параметров. Предлагается смонтировать новые теплообменники, расположив их в газоходе каждого корпуса котла после дымососа. Принципиальная тепловая схема реконструкции газовоз-духоводов котла (на примере одного из корпусов) приведена на рис. 1. При таком расположении теплообменников их можно монтировать на фундамент непосредственно на поверхности земли, так как газоходы котла после дымососа на достаточно протяженном участке располагаются непосредственно у земли, что уменьшает затраты на строительно-монтажные работы для вновь монтируемых теплообменников. Греющей средой в теплообменниках являются дымовые газы котла, а нагреваемой средой является холодный воздух, который после нагрева во вновь смонтированных теплообменниках направляется в РВП котла. При изменении режима работы котла, например, уменьшении паровой нагрузки котла относительно номинального значения, происходит уменьшение температуры дымовых газов. Для сохранения температуры дымовых газов на уровне, обеспечивающем надежную и безопасную эксплуатацию дымовых труб, предусмотрено байпасирование части воздуха помимо теплообменника. Расход воздуха через байпасный воздуховод регулируется при помощи регулятора 10 (см. рис. 1). Реконструкция газовоздушного тракта увеличивает его аэродинамическое сопротивление. Поэтому при определении размеров проточной части новых теплообменников необходимо обеспечить не только требуемый теплосъем от дымовых газов, но и значение увели-

Рис. 1. Предлагаемая схема реконструкции газовоздушного тракта одного из корпусов котла ПК-41 (жирными линиями выделены изменения, вносимые в существующую схему):

1 – воздуховод холодного воздуха из котельного цеха; 2 – воздуховод холодного воздуха снаружи цеха; 3 – переключатель подвода воздуха; 4 – дутьевой вентилятор (ДВ); 5 – направляющий аппарат ДВ; 6 – дымосос (ДС); 7 – направляющий аппарат ДС; 8 – вновь монтируемый теплообменник; 9 – дымовая труба; 10 – регулятор расхода воздуха помимо нового теплообменника; 11, 12 – шиберы, используемые при выводе котла в ремонт; 13 – калорифер; 14, 15 – РВП; 16, 17, 18, 19 – отключающие шиберы РВП по воздушной и газовой стороне; 20, 21– шибер и воздуховод рециркуляции горячего воздуха; 22, 23 – шибер и байпасный воздуховод РВП по воздуху при выводе в ремонт одного из РВП;

24, 25 – воздуховод на охлаждение балок каркаса котла

чения аэродинамического сопротивления теплообменников, которое не вызовет необходимости замены тягодутьевых механизмов котла. В связи с тем, что расчет размеров параметров теплообменника был привязан к фактическим характеристикам котла электростанции, на которой предлагалось проведение работ по модернизации, проведенный анализ режимов работы котла на номинальной нагрузке выявил предельную величину возможного увеличения аэродинамического сопротивления котла, которое составило по воздушной стороне 56 мм вод. ст., а по стороне дымовых газов – 43 мм вод. ст.

Применяемые методики расчета размеров теплообменников, технико-экономических показателей котла после модернизации и экономии затрат топлива изложены в [13–15]. Размеры теплообменников, монтируемых в газоходах котла, были определены исходя из обеспечения минимально допустимой температуры уходящих газов перед дымовой трубой 100 °С в зимнем режиме работы, когда температура холодного воздуха на входе в РВП составляла 7 °С. В результате проведенных расчетов различной компоновки и диаметра труб в теплообменнике было выявлено, что условию обеспечения необходимой предельной величины увеличения аэродинамического сопротивления соответствовала шахматная компоновка пучка с внешним диаметром труб 45 мм, толщиной 3 мм. Воздух проходит внутри труб, а дымовые газы поперечно омывают трубы с наружной стороны («перекрестный одноходовой теплообменник»).

В каждом газоходе к дымовой трубе после дымососа каждого корпуса котла планировалось установить один теплообменник. Всего на котел, состоящий из двух корпусов, монтируется два теплообменника. Из-за достаточно больших размеров теплообменников для уменьшения затрат на их изготовление, транспортировку и монтаж теплообменники изготавливаются из нескольких секций каждый.

Теоретическая часть

Расчет повышения КПД котла, показатели которого соответствовали нормативным значениям, проводился для фактического зимнего режима работы в диапазоне изменения паровой нагрузки от номинальной (зимний максимум работы блока) до минимальной (разгрузка блока в период минимальных цен на электроэнергию на оптовом рынке). Расчет КПД проводился по обратному балансу в соответствии с методикой, изложенной в [14]. Температура холодного воздуха на входе в новые теплообменники составляла7 °С. Избытки воздуха в уходящих газах изменялись в зависимости от нагрузки котла от 1,296 до 1,511. Топливо – газ. Потери тепловой энергии с химическим и механическим недожогом отсутствовали. Потери тепловой энергии от обмуровки котла соответствовали нормативным значениям. На рис. 2 представлены зависимости изменения увеличения КПД котла «брутто» после модернизации Δηкбр , % в зависимости от паровой нагрузки котла D0 , т/ч в зимнем режиме работы (фактическая температура воздуха на входе в котел 7 °С).

Рис. 2. Зависимость изменения увеличения КПД котла «брутто» от паропроизводительности котла

Температура уходящих газов после модернизации поддерживалась на постоянном уровне 102 °С при любом режиме работы котла, а до модернизации она уменьшалась при разгрузке котла.

Поэтому величина повышения КПД котла за счет модернизации существенно зависит от его режима работы. Максимальный эффект от проведения модернизации соответствует работе при номинальной нагрузке, а наименьшее значение экономического эффекта соответствует работе при минимальной нагрузке котла. Поэтому для определения экономической эффективности предлагаемого мероприятия был проведен расчет повышения КПД котла для среднегодового фактического режима работы, результаты которого представлены в таблице. Величина повышения КПД котла оказалась менее значительной, чем для работы в условиях зимнего максимума нагрузок, но тем не менее была существенно больше, чем у котла до модернизации. Уменьшение величины полученного эффекта связано в основном c более высокой среднегодовой температурой холодного воздуха на входе в новый теплообменник, которая составила 15 °С. Кроме того, фактическое состояние котла в анализируемом году эксплуатации было несколько луч-

Результаты расчета эффективности модернизации котла для среднегодового режима работы

Параметр

Размерность

Значение до модернизации/после модернизации

1

Нагрузка котла

т/ч

713/713

2

Избыток воздуха в режимном сечении

1,05/1,05

3

Присосы в конвективную часть

%

29,1/29,1

4

Температура холодного воздуха на входе в новые теплообменники

°C

–/15

5

Температура воздуха после новых теплообменников (на входе в РВП)

°C

15 (на входе в РВП)/55 (после теплообменников)

6

Температура уходящих газов до новых теплообменников (после РВП)

°C

114 (после РВП)/138 (до теплообменников)

7

Температура уходящих газов после новых теплообменников

°C

–/103

8

Доля расхода воздуха, направляемого помимо новых теплообменников (через «байпас») от общего расхода воздуха

%

–/40

9

Увеличение КПД котла «брутто» за счет уменьшения температуры уходящих газов после модернизации

%

0,58

10

Аэродинамическое сопротивление нового теплообменника: по дымовым газам/по воздуху

мм вод. ст.

37/28

11

Увеличение потребляемой мощности после модернизации дутьевых вентиляторов / дымососов

кВт

103/152

12

Суммарное увеличение затрат электроэнергии на собственные нужды из-за увеличения затрат на дутьевые вентиляторы и дымососы за год работы (7496 ч) после модернизации

тыс. кВт·ч/тыс. руб.

1911/1204

13

Экономия топлива за год работы после модернизации

т.у.т./тыс. руб.

3349/13321

14

Экономический эффект от внедрения рассматриваемого технического решения на одном котле за год работы (п. 13 – п. 12)

тыс. руб.

12117

ше нормативного. Температура воздуха на входе в РВП после новых теплообменников составила 55 °С, что выше температуры конденсации водяных паров в дымовых газах, которая составляет около 46 °С [16]. Представляет интерес оценка максимально возможных затрат на реализацию данного проекта, исходя из рассчитанного эффекта. Величина срока окупаемости, который обычно применяется в качестве одного из критериев эффективности проекта, зависит от принятой для расчета нормы прибыли и темпа роста цен. Для каждой из генерирующих компаний величина нормы прибыли для инвестиционных проектов принимается индивидуально, в данной работе она принята равной 15 %. Темп роста цен принят равным 1,02. В этом случае предельная величина капитальных вложений для обеспечения срока окупаемости в пределах 7 лет должна составлять не более 52 950 млн руб.

Практическая значимость

Для обеспечения необходимой величины охлаждения дымовых газов в зимнем режиме работы при номинальной нагрузке котла и одновременного повышения температуры воздуха на входе в РВП до температуры, превышающей температуру конденсации водяных паров в дымовых газах, он может быть оснащен дополнительными теплообменниками. Расчетная тепловая мощность каждого теплообменника должна составлять 9,2 Гкал/ч. Расчетные габаритные размеры каждого из двух теплообменников, монтируемых на котел, для обеспечения допустимой величины увеличения аэродинамического сопротивления газовоздушного тракта котла типа ПК-41 после модернизации составили: глубина расположения в газоходе (поперек потока дымовых газов) – 9320 мм, высота (длина трубок) 5780 мм, длина (по ходу дымовых газов) – 2550 мм. Общее количество трубок в одном теплообменнике 4794 штук (из них 94 трубки расположены поперечно потоку дымовых газов, 51 ряд трубок расположен вдоль хода дымовых газов).

При работе котла на газовом топливе за счет изменения расхода воздуха, направляемого в новые теплообменники, обеспечивается регулируемый теплосъемот дымовых газов для обеспечения температуры уходящих дымовых газов 102 °С при различных режимах работы котла, что повышает эффективность его работы и обеспечивает надежную и безопасную эксплуатацию дымовых труб электростанции. Величина повышения КПД котла после модернизации зависит от режима работы котла и в зимнем режиме работы может составить до 1,51 % при номинальной нагрузке. Температура воздуха перед РВП при этом увеличивается до значений, превышающих температуру конденсации дымовых газов, что повышает надежность работы воздухоподогревателя. Поддержание необходимой температуры уходящих дымовых газов после теплообменников можно обеспечить в автоматическом режиме работы за счет соответствующих дополнений в существующую систему автоматического управления котлом.

При переводе котла на работу на жидком топливе (мазуте) температура воздуха перед РВП должна быть обеспечена на уровне не менее 70 °С [5]. Повышение температуры до требуемого значения обеспечивается включением в работу калориферов или рециркуляцией горячего воздуха на вход в РВП. При этом вновь установленные подогреватели остаются в работе, а за счет калориферов обеспечивается только дополнительный подогрев воздуха. Во время работы котла на мазуте будет происходить занос поверхностей нагрева мазутной золой. В связи с этим новый теплообменник должен быть изготовлен из коррозионностойких материалов (или с антикоррозийным покрытием) и оснащен устройством для очистки образовавшихся отложений, например, установкой для термоволновой очистки.

Следует отметить, что рассматриваемое техническое решение ориентировано в первую очередь на электростанции, предназначенные в основном для производства только электрической энергии (ГРЭС). Для электростанций, на которых значительную долю в общем объеме производства составляет отпуск тепловой энергии (ТЭЦ) при наличии установок для подготовки очищенной воды значительной производительности (значительный объем подпитки тепловых сетей или значительное количество невозврата конденсата пара), необходима разработка технико-экономического обоснования выбора наиболее экономически целесообразного технического решения по утилизации тепловой энергии дымовых газов из рассмотренных в данной статье и в работе [9].

Выводы

  • 1.    Рассмотренное техническое решение позволит обеспечить достаточно существенное увеличение срока службы набивки воздухоподогревателей за счет увеличения температуры воздуха перед ними даже при работе в зимнем режиме с отключенными калориферами, что особенно актуально при работе на газовом топливе после периода работы на мазуте. При этом произойдет повышение КПД котла «брутто» за счет использования теплоты уходящих газов для подогрева воздуха. Величина повышения температуры воздуха и КПД котла зависит от типа котла и его технического состояния до проведения модернизации. Для рассмотренного в статье варианта модернизации котла типа ПК-41 величина температуры воздуха перед РВП при среднегодовом режиме работы составила 55 °С, при этом обеспечено увеличение КПД котла «брутто» на 0,58%.

  • 2.    Для возможности регулирования температуры уходящих газов при изменении нагрузки

  • 3.    Для охлаждения дымовых газов во вновь монтируемых теплообменниках не требуется применение охлаждающей воды. Поэтому при внедрении рассмотренного технического решения не произойдет разгрузки отборов паровых турбин и уменьшения теплофикационной выработки электростанции.

котла необходимо снабжать вновь монтируемые теплообменники байпасным воздуховодом помимо теплообменников.

Список литературы Влияние отклонений электрических параметров электропередачи на предельное время отключения короткого замыкания по условию устойчивости генераторов системы

  • Ахмедова, О.О. Уточненный алгоритм расчета активного сопротивления воздушной линии электропередачи с учетом погодных условий / О.О. Ахмедова // Международный журнал прикладных и фундаментальных исследований. - 2016. - № 12. - С. 387-389.
  • Бердин, А.С. Формирование параметров модели ЭЭС для управления электрическими режимами / А.С. Бердин, П.А. Крючков; Урал. гос. техн. ун-т. - Екатеринбург: ГОУ ВПО УГТУ - УПИ, 2000. - 100 с.
  • Веников, В.А. Переходные электромеханические процессы в электрических системах / В.А. Веников. - М.: Высшая школа, 1985. - 536 с.
  • Горев, А.А. Переходные процессы синхронной машины / А.А. Горев. - Л.: Наука, 1985. - 502 с.
  • Жданов, П.С. Вопросы устойчивости электрических систем / П.С. Жданов. - М.: Альянс, 2015. - 456 с.
  • Иванов, И.Е. Аналитическое определение параметров транспонированной линии электропередачи на базе синхронизированных векторных измерений / И.Е. Иванов // Вестник ИГЭУ. - 2019. - №. 1. - С. 30-42.
  • DOI: 10.17588/2072-2672.2019.1.030-042
  • Идельчик, В.И. Электрические системы и сети / В.И. Идельчик. - М.: Энергоатомиздат, 1989. - 592 с.
  • Методические указания по устойчивости энергосистем. - М.: Изд-во НЦ ЭНАС, 2004. - 16 с.
  • Новиков, А.С. Влияние погрешностей информации на расчеты оптимальных режимов / А.С. Новиков, В.И. Идельчик, С.И. Паламарчук // Известия Академии Наук СССР. Энергетика и Транспорт. - 1981. - № 2. - С. 22-29.
  • Anderson, P. A probabilistic approach to power system stability analysis / P. Anderson, A. Bose // IEEE Transactions on Power Apparatus and Systems. - 1983. - Vol. 8. - P. 2430-2439.
  • DOI: 10.1109/TPAS.1983.317742
  • Billinton, R. Probabilistic assessment of transient stability in a practical multimachine system / R. Billinton, P.R.S. Kuruganty // IEEE Transactions on Power Apparatus and Systems. - 1981. - Vol. 7. - P. 3634-3641.
  • DOI: 10.1109/TPAS.1981.316657
  • Christakou, K. Voltage control in active distribution networks under uncertainty in the system model: a robust optimization approach / K. Christakou, M. Paolone, A. Abur // IEEE Transactions on Smart Grid. - 2017. - Vol. 9, iss. 6. - P. 5631-5642.
  • DOI: 10.1109/TSG.2017.2693212
  • Frank, S. Temperature-Dependent Power Flow / S. Frank, J. Sexauer, S. Mohagheghi // IEEE Transactions on Power Systems. - 2013. - Vol. 28, iss. 4. - P. 4007-4018.
  • DOI: 10.1109/TPWRS.2013.2266409
  • Kundur, P. Power system stability and control / P. Kundur. - New York: Mc Graw Hill Education, 2015. - 1196 p.
  • Zad, B.B. Impacts of the model uncertainty on the voltage regulation problem of medium-voltage distribution systems / B. B. Zad, J. Lobry, F. Vallee // IET Generation, Transmission & Distribution. - 2018. - Vol. 12, iss. 10. - P. 2359-2368.
  • DOI: 10.1049/iet-gtd.2017.1829
  • Zarco, P. Power system parameter estimation: a survey / P. Zarco, A. G. Exposito // IEEE Transactions on Power Systems. - 2000. - Vol. 15, iss. 1. - P. 216-222.
  • DOI: 10.1109/59.852124
Еще
Статья научная