Влияние содержания алевропелита на свойства свежих и затвердевших композитов с несколькими связующими, пригодных для 3D-печати
Автор: Славчева Г.С., Солонина В.А., Панченко Ю.Ф., Орлов В.С., Филипенко П.В.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 4 (109), 2023 года.
Бесплатный доступ
Объектом исследования является 3D-печатная смесевая смесь с содержанием алевропелита. Исследовано влияние дозировки алевропелита и типа модификатора вязкости на технологические свойства и прочность структурообразования 3D-печатных смесей.
3D-печать, 3D-печатные смешанные смеси, технологические свойства, структурообразование, прочность
Короткий адрес: https://sciup.org/143182702
IDR: 143182702 | DOI: 10.4123/CUBS.109.9
Список литературы Влияние содержания алевропелита на свойства свежих и затвердевших композитов с несколькими связующими, пригодных для 3D-печати
- Hou, S., Duan, Z., Xiao, J. and Ye, J. (2021). A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Construction and Building Materials, 273, 121745. https://doi.org/10.1016/j.conbuildmat.2020.121745
- Saruhan, V., Keskinateş, M. and Felekoğlu, B. (2022). A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications. Construction and Building Materials, 337, 127629. https://doi.org/10.1016/j.conbuildmat.2022.127629
- Lee, H., Kim, J.HJ., Moon, J.H., Kim, W.W. and Seo, E.A.. (2019) Evaluation of the Mechanical Properties of a 3D-Printed Mortar. Materials. 12 (24), 4104. https://doi.org/10.3390/ma12244104
- Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G. and Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45, 1221-1232. https://doi.org/10.1617/s11527-012-9828-z
- Nerella, V.N., Näther, M., Iqbal, A., Butler, M. and Mechtcherine, V. (2019). Inline quantification of extrudability of cementitious materials for digital construction. Cement and Concrete Composites, 95, 260-270. https://doi.org/10.1016/j.cemconcomp.2018.09.015
- Paul, S.C., Tay, Y.W.D., Panda, B. and Tan, M.J. (2018). Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of civil and mechanical engineering, 18, 311-319. https://doi.org/10.1016/j.acme.2017.02.008
- Tay, Y.W.D., Li, M.Y. and Tan, M.J. (2019). Effect of printing parameters in 3D concrete printing: Printing region and support structures. Journal of Materials Processing Technology, 271, 261-270. https://doi.org/10.1016/j.jmatprotec.2019.04.007
- Mechtcherine, V., Nerella, V.N., Will, F., Näther, M., Otto, J. and Krause, M. (2019). Large-scale digital concrete construction–CONPrint3D concept for on-site, monolithic 3D-printing. Automation in construction, 107, 102933. https://doi.org/10.1016/j.autcon.2019.102933
- Wang, W., Konstantinidis, N., Austin, S.A., Buswell, R.A., Cavalaro, S. and Cecinia, D. (2020). Flexural behaviour of AR-glass textile reinforced 3D printed concrete beams. In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 2 (pp. 728-737). Springer International Publishing. https://doi.org/10.1007/978-3-030-49916-7_73
- Cicione, A., Kruger, J., Walls, R.S., and Van Zijl, G. (2021). An experimental study of the behavior of 3D printed concrete at elevated temperatures. Fire Safety Journal, 120, 103075. https://doi.org/10.1016/j.firesaf.2020.103075
- Rahul, A.V., Santhanam, M., Meena, H. and Ghani, Z. (2019). 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites, 97, 13-23. https://doi.org/10.1016/j.cemconcomp.2018.12.014
- Moeini, M.A., Hosseinpoor, M. and Yahia, A. (2020). Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Construction and Building Materials, 257, 119551. https://doi.org/10.1016/j.conbuildmat.2020.119551
- Ma, G., Li, Z., Wang, L., Wang, F. and Sanjayan, J. (2019). Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials, 202, 770-783. https://doi.org/10.1016/j.conbuildmat.2019.01.008
- Suntharalingam, T., Nagaratnam, B., Poologanathan, K., Hackney, P. and Ramli, J. (2020). Effect of polypropylene fibres on the mechanical properties of extrudable cementitious material. In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 2 (pp. 516-526). Springer International Publishing. https://doi.org/10.1007/978-3-030-49916-7_53
- Xu, Y., Schlangen, E., and Šavija, B. (2020). Auxetic Behavior of Cementitious Cellular Composites Under Uniaxial Compression and Cyclic Loading. In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 2 (pp. 547-556). Springer International Publishing. https://doi.org/10.1007/978-3-030-49916-7_56
- Rahul, A.V., and Santhanam, M. (2020). Evaluating the printability of concretes containing lightweight coarse aggregates. Cement and Concrete Composites, 109, 103570. https://doi.org/10.1016/j.cemconcomp.2020.103570
- Baz, B., Aouad, G., and Remond, S. (2020). Effect of the printing method and mortar's workability on pull-out strength of 3D printed elements. Construction and Building Materials, 230, 117002. https://doi.org/10.1016/j.conbuildmat.2019.117002
- Manikandan, K., Wi, K., Zhang, X., Wang, K., and Qin, H. (2020). Characterizing cement mixtures for concrete 3D printing. Manufacturing Letters, 24, 33-37. https://doi.org/10.1016/j.mfglet.2020.03.002
- Kazemian, A., Yuan, X., Cochran, E., and Khoshnevis, B. (2017). Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials, 145, 639-647. https://doi.org/10.1016/j.conbuildmat.2017.04.015
- Arunothayan, R., Nematollahi, B., Bong, S. H., Ranade, R. and Sanjayan, J. (2020). Hardened properties of 3d printable ultra-high-performance fiber-reinforced concrete for digital construction applications. In Rheology and Processing of Construction Materials: RheoCon2 & SCC9 2 (pp. 355-362). Springer International Publishing. https://doi.org/10.1007/978-3-030-22566-7_41
- Zhang, Y., Zhang, Y., She, W., Yang, L., Liu, G. and Yang, Y. (2019). Rheological and harden properties of the high-thixotropy 3D printing concrete. Construction and Building Materials, 201, 278-285. https://doi.org/10.1016/j.conbuildmat.2018.12.061
- Zhu, B., Pan, J., Nematollahi, B., Zhou, Z., Zhang, Y. and Sanjayan, J. (2019). Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Materials & Design, 181, 108088. https://doi.org/10.1016/j.matdes.2019.108088
- Bao, Y., Xu, M., Soltan, D., Xia, T., Shih, A., Clack, H. L. and Li, V. C. (2019). Three-dimensional printing multifunctional engineered cementitious composites (ECC) for structural elements. In First RILEM international conference on concrete and digital fabrication–digital concrete 2018 (pp. 115-128). Springer International Publishing. https://doi.org/10.1007/978-3-319-99519-9_11
- Mazhoud, B., Perrot, A., Picandet, V., Rangeard, D. and Courteille, E. (2019). Underwater 3D printing of cement-based mortar. Construction and Building Materials, 214, 458-467. https://doi.org/10.1016/j.conbuildmat.2019.04.134
- Tao, Y., Lesage, K., Van Tittelboom, K., Yuan, Y. and De Schutter, G. (2020). Effect of limestone powder substitution on fresh and hardened properties of 3D printable mortar. In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 2 (pp. 135-143). Springer International Publishing. https://doi.org/10.1007/978-3-030-49916-7_14
- Novoselov A.A (2016) Lithological and Petrographic Characteristics of Aleuropelitic Ishimskian Deposits in the Western Part of Tobol-Ishim Interstream Area. Georesources. 18 (3), 206-211. https://doi.org/10.18599/grs.18.3.10
- Slavcheva, G.S. Artamonova, O.V., Shvedova, M.A. and Britvina, E.A. Dvukhfaznaya smes' na osnove tsementa dlya kompozitov v tekhnologiyakh stroitel'noy 3D-pechati [Two-phase mixture based on cement for composites in construction 3d printing technology]. Patent RF, RU 2729220C1, 2020. URL: https://yandex.ru/patents/doc/RU2729220C1_20200805
- Slavcheva, G.S. Artamonova, O.V., Britvina, E.A., Babenko D.S. and Ibryaeva A.I. Dvukhfaznaya smes' na osnove tsementa dlya kompozitov v tekhnologiyakh stroitel'noy 3D-pechati [Two-phase mixture based on cement for composites in construction 3d printing technology]. Patent RF, RU 2729085C1, 2020.URL: https://yandex.ru/patents/doc/RU2729085C1_20200804
- Slavcheva, G.S. Artamonova, O.V., Shvedova, M.A. and Britvina, E.A.. Dvukhfaznaya smes' na osnove tsementa dlya kompozitov v tekhnologiyakh stroitel'noy 3D-pechati [Two-phase mixture based on cement for composites in construction 3d printing technology]. Patent RF, RU 2729086C1, 2020. URL: https://yandex.ru/patents/doc/RU2729086C1_20200804
- Slavcheva, G.S. Artamonova, O.V., Britvina, E.A., Babenko, D.S. and Ibryaeva, A.I.. Dvukhfaznaya smes' na osnove tsementa dlya kompozitov v tekhnologiyakh stroitel'noy 3D-pechati [Two-phase mixture based on cement for composites in construction 3d printing technology]. Patent RF, RU 2729283C1, 2020. URL: https://yandex.ru/patents/doc/RU2729283C1_20200805
- GOST 31108-2020 Common cements. Specifications. https://docs.cntd.ru/document/1200174658.
- GOST 23732-2011 Water for concrete and mortars. Specifications. https://docs.cntd.ru/document/1200093835.
- GOST 8736-2014 Sand for construction works. Specifications. https://docs.cntd.ru/document/1200114239.
- Slavcheva, G.S., Shvedova, M.A. and Babenko, D.S. (2018) Analiz i kriterial'naya ocenka reologicheskogo povedeniya smesej dlya stroitel'noj 3D-pechati [Analysis and criteria evaluation of rheological behavior of mixtures for 3D construction printing]. Building Materials, 12, 34–40. https://doi.org/10.31659/0585-430X-2018-766-12-34-40. (rus)
- Slavcheva, G.S. and Artamonova, O.V. (2018). Rheological behavior of 3D printable cement paste: criterial evaluation. Magazine of Civil Engineering, 8 (84), 97-108. https://doi.org/10.18720/MCE.84.10
- Toutou Z., Roussel N. and Lanos C. (2005) The squeezing test: A tool to identify firm cement-based material's rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 35 (10), 1891–1899. https://doi.org/10.1016/j.cemconres.2004.09.00
Статья научная