Влияние температурного стресса на спектр жирных кислот штаммов Vibrio cholerae

Автор: Шипко Елена Сергеевна, Дуванова Ольга Викторовна

Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio

Рубрика: Микробиология

Статья в выпуске: 2, 2022 года.

Бесплатный доступ

В условиях смоделированного температурного стресса методом газовой хроматографии в сочетании с масс-спектрометрией был изучен спектр жирных кислот штаммов Vibrio cholerae O1, О139, non O1/non O139 серогрупп с различным набором детерминант патогенности, выделенных от больных и из проб воды поверхностных водоемов. Выявлены достоверные отличия в составе жирных кислот при холодовом и тепловом стрессах в клетках возбудителя холеры относительно контрольных образцов. Штаммы, выделенные из воды поверхностных водоемов, отличались по спектру жирных кислот при холодовом стрессе от штаммов, выделенных от больных. У штаммов, выделенных из воды, снижение температуры культивирования до 23°С сопровождалось синтезом докозановой, тетракозановой и гексакозановой кислот, а до 4°С - увеличением количества тетрадекановой и гексадекановой кислот. Тогда как у штаммов, выделенных от больных, снижение температуры культивирования вызывало закономерное увеличение гексадеценовой и октадеценовой кислот. Реакция на тепловой стресс у большинства изученных штаммов, независимо от набора детерминант патогенности и источника выделения, имела общую тенденцию: увеличение суммарного количества насыщенных жирных кислот, синтез trans-изомеров ненасыщенных жирных кислот, появление ω-алициклических и iso-разветвленных жирных кислот. Помимо ремоделирования жирно-кислотного состава мембраны под действием температурного стресса отмечен синтез оксилипинов, фенилпропаноидов, терпеноидов, возможно, играющих роль адаптогенов.

Еще

Vibrio cholerae, жирные кислоты, холодовой стресс, тепловой стресс

Короткий адрес: https://sciup.org/147238653

IDR: 147238653   |   DOI: 10.17072/1994-9952-2022-2-143-154

Список литературы Влияние температурного стресса на спектр жирных кислот штаммов Vibrio cholerae

  • Бахолдина С.И., Соловьева Т.Ф. Экологические аспекты вирулентности бактерий псевдотуберкулеза // Вестник ДВО РАН. 2009. № 3. С. 85-89. URL: https: //cyberleninka.ru/artide/n/ecologicheskie-aspekty-virulentnosti-bacteriy-pseudotuberculeza (дата обращения: 11.09.2020).
  • Васюкова Н.И., Озерецковская О.Л. Индуцированная устойчивость растений и салициловая кислота (обзор) // Прикладная биохимия и микробиология. 2007. Т. 43, № 4. С. 405-411. URL: https://elibrary.ru/download/elibrary_9534588_50848214.pdf.
  • Васюкова Н.И., Озерецковская О.Л. Жасмонат-зависимая защитная сигнализация в тканях растений. // Физиология растений. 2009. Т. 56, № 5. С. 643-653. URL: http://elibrary.ru /item.asp?id =12900977.
  • Колупаев Ю.Е., Ястреб Т.О. Стресс-протекторные эффекты салициловой кислоты и ее структурных аналогов // Физиология и биохимия культ. растений. 2013. Т. 45, № 2. С. 113-126. URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/66470/ 03Kolupaev.pdf?sequence= 1.
  • Кузьменко Т.Е., Головня Р.В., Вронова Е.А. Исследование состава высших жирных кислот свободных липидов V. cholerae // Биоорганическая химия. 1980. Т. 1, № 6. С. 90-98.
  • Осипов Г.А. Хромато-масс-спектрометрический анализ микроорганизмов и их сообществ, в клинических пробах при инфекциях и дисбиозах // Химический анализ в медицинской диагностике. М.: Наука, 2010. С. 293-368.
  • Сачивкина Н.П., Подопригора И.В., Марахова А.И. Фарнезол: свойства, роль и перспективы использования при регулировании пленкообразования у грибов рода Candida // Фармация. 2020. Т. 69, № 6. С. 8-12. https://doi.org/10.29296/25419218-2020-06-02.
  • Day A.P., Oliver J.D. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state // J. Microbiol. 2004. Vol. 42, № 2. P. 69-73. PMID: 15357297.
  • Diaz-Quiroz D.C. et al. Current perspectives on applications of shikimic and aminoshikimic acids in pharmaceutical chemistry // Research and Reports in Medicinal Chemistry. 2014. № 4. Р. 35-46. DOI: http://doi.org /10.2147/RRMC.S46560
  • Eberlein C. et al. Immediate response mechanisms of gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion // Appl. Microbiol. Biotechnol. 2018. Vol. 102. P. 2583-2593. DOI: http: //doi.org/10.1007/ s00253-018-8832-9.
  • Heipieper H.J., Hachicho N. Bacterial solvent responses and tolerance: ris-trans isomerization // Hydrocarbon and lipid. Microbiology Protocols. / eds McGenity T., Timmis K., Nogales B. Berlin; Heidelberg: Springer, 2014. DOI: http://doi.org/10.1007/8623_2014_16.
  • Heipeiper H.J., Meinhard F., Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism // Fems Microbiol. Let. 2003. Vol. 229, № 1. P. 1-7. DOI: http://doi.org /10.1016 /S0378-1097(03) 00792-4.
  • Janse J.D. Fatty acid analysis in the identification, taxonomy and ecology of (plant pathogenic) Bacteria // Diagnosis and Identification of Plant Pathogens. Developments in Plant Pathology / eds Dehne H.W., Adam G., Diekmann M., Frahm J., Mauler-Machnik A., van Halteren P. Dordrecht: Springer, 1997. № 11. DOI: https://doi.org/10.1007/978-94-009-0043-1_13.
  • Javvadi S.G. et al. The spent culture supernatant of Pseudomonas syringae contains azelaic acid // BMC Microbiol. 2018. Vol. 18. P. 1-11. DOI: http://doi.org/10.1186/s12866-018-1352-z.
  • Lambert M.A. et al. Differentiation of Vibrionaceae species by their cellular fatty acid composition // Int. J. Syst. Bacteriol. 1983. Vol. 33, № 4. P. 777-792. DOI: http://doi.org/10.1099/00207713-33-4-777.
  • Lee D.et al. Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR) // Sci. Rep. 2018. Vol. 9. P. 8. DOI: http://doi.org /10.1038/s41598-017-18361-3.
  • Li J. et al. Temperature- and surfactant-induced membrane modifica tions that alter Listeria monocytogenes nisin sensitivity by different mechanisms // Appl. Environ. Microbiol. 2002. Vol. 68, № 12. P. 5904-5910. DOI: http://doi.org/10.1128/ aem.68.12 5904 -5910. 2002.
  • Moldoveanu S.B., David V. Derivatization Methods in GC and GC/MS // Gas Chromatography / ed. Peter Kusch. 2019. 142 p. DOI: 10.5772/intechopen.81954.
  • Moravec A.N. et al. Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species // Appl. Environ. Microbiol. 2017. Vol. 83, № 22. P. 1-16. doi: 10.1128/AEM.01415-17.
  • Palmieri F. et al. Chapter two-oxalic acid, a molecule at the crossroads of bacterial-fungal interactions // Advan. Appl. Microbiol. 2019. Vol. 106. P. 49-77. DOI: http://doi.org/10.1016 /bs.aambs.2018.10.001.
  • Poger D., Caron B., Mark A.E. Effect of methyl-branched fatty acids on the structure of lipid bilayers // J. Physical. Chem. 2014. Vol. 118, № 48. P. 13838-13848. DOI: http: //doi.org/10.1021 /jp503910r.
  • Poger D., Caron B., Mark A.E. Ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers // J. Physical. Chem. B. 2015. Vol. 119, № 17. P. 5487-5495. DOI: http: //doi.org /10.1021/acs.jpcb.5в00958.
  • Poger D., Mark A.E. Effect of ring size in ю-alicyclic fatty acids on the structural and dynamical properties associated with fluidity in lipid bilayers // Langmuir. 2015. Vol. 31, № 42. P. 11574-11582. DOI: http://doi.org/10.1021/acs.langmuir.5b02635.
  • Rowe H.M., Hantley J.F. From the outside - in: The Francisella tularensis envelope and virulence // Front Cell Infect. Microbiol. 2015. № 5. P. 94. DOI: http://doi.org/10.3389/fcimb.2015.00094.
  • Seydlova G. et al. The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches // J. Biol. Chem. 2017. Vol. 292, № 19. P. 8048-8058. DOI: http://doi.org /10.1074/jbc.M117.781559.
  • Shalk M. et al. Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenylpropanoid pathway // Plant Physiol. 1998. Vol. 118. P. 209-218. DOI: http://doi.org /10.1104/ pp.118.1.209.
  • Sherlock. Microbial Identification System. V 6.2. MIS Operating Manual. Newark: Sandy Dr, 2012.
  • Siliakus M.F., Oost J., Kengen S.W.M. Adaptations of archeal and bacterial membranes to variations in temperture, pH and pressure // Extremophiles. 2017. Vol. 21. P. 651-670. DOI: http://doi.org /10.1007/s00792-017-0939-x.
  • Smith D.S. et al. Polyunsaturated fatty acids cause physiological and behavioral changes in Vibrio algino-lyticus and Vibrio fischeri // Microbiologyopen. 2021. Vol. 10, № 5. P. 1-16. doi: 10.1002/mbo3.1237.
  • Urdaci M.C., Marchand M., Grimont P.A. Characterization of 22 Vibrio species by gas chromatography analysis of their cellular fatty acids // Res. Microbiol. 1990. Vol. 141, № 4. P. 437-452. DOI: http://doi.org/10.1016/0923-2508(90)90070-7
  • Vigh L., Landry J., Nakamoto H. Membrane regulation of the stress response from prokaryotic models to mammalian cells // Ann. NY Acad. Sci. 2007. Vol. 1113, № 1. P. 40-51. DOI: http://doi.org /10.1196/annals.1391.027.
  • Wang L., Wu J. The essential role of jasmonic acid in plant herbivore interactions using the wild tobacco Nicotiana attenuate as a model // J. Gen. Genomics. 2013. Vol. 40. P. 597-606. DOI: http://doi.org /10.1016 /j.jgg.2013.10.001.
  • Watson H. Biological membranes // Essays Biochem. 2015. Vol. 59. P. 43-69. DOI: http://doi.org/10.1042/bse0590043.
  • Yoon J-H, Lee S-Y. Characteristics of viable-but-nonculturable Vibrio parahaemolyticus induced by nutrient-deficiency at cold temperature // Crit. Rev. Food Sci. Nutr. 2020. Vol. 60, № 8. P. 1302-1320. DOI: 10.1080/ 10408398.2019.1570076.
Еще
Статья научная