Влияние увеличения доли дальней красной области в полноспектральном светодиодном облучении на рост и развитие растений сахарной свеклы (Beta vulgaris L. ssp. vulgaris var. saccharifera Alef.) в закрытых агробиотехносистемах
Автор: Верник П.А., Зеленков В.Н., Латушкин В.В., Кособрюхов А.А., Новиков В.Б., Путилина Л.Н., Иванова М.И., Гаврилов С.В.
Журнал: Овощи России @vegetables
Рубрика: Мелиорация, водное хозяйство и агрофизика
Статья в выпуске: 6 (74), 2023 года.
Бесплатный доступ
Актуальность и методология. С целью определения влияния увеличения доли дальнего красного света (различного соотношения красного и дальнего красного света) в общем спектре полихромного облучения на показатели роста растения сахарной свеклы гибрида Смена выращивали в течение 82 суток при светодиодном освещении в условиях регулируемого климата в цифровом устройстве «Синерготрон» модели ИСР 2.01 с двукратным увеличением доли дальнего красного света по сравнению с контролем.
Синерготрон, закрытая агробиотехносистема, свекла сахарная, дальний красный свет, спектральный состав, флуоресценция хлорофилла, биометрические показатели
Короткий адрес: https://sciup.org/140303342
IDR: 140303342 | DOI: 10.18619/2072-9146-2023-6-129-135
Список литературы Влияние увеличения доли дальней красной области в полноспектральном светодиодном облучении на рост и развитие растений сахарной свеклы (Beta vulgaris L. ssp. vulgaris var. saccharifera Alef.) в закрытых агробиотехносистемах
- Cary A., Mitchell F.S. LED advancements for plant-factory artificial lighting. Plant Factory (Second Edition). An Indoor Vertical Farming System for Efficient Quality Food Production / Editors Toyoki Kozai Genhua Niu Michiko Takagaki Acad. Press, 2020. P. 167-184. https://doi.org/10.1016/B978-0-12-816691-8.00010-8
- Yuanchun Ma, An Xu, Zong-Ming (Max). Cheng Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Horticultural Plant Journal. November 2021;7(6):552-564. https://doi.org/10.1016/j.hpj.2020.05.007
- Smith H. Light quality, photoperception, and plant strategy. Annual Review of Plant Physiology, 1982;33(1):481–518. https://doi.org/10.1146/annurev.pp.33.060182.
- Casal J.J. Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol. 2013;(64):403–427. https://doi.org/10.1146/annurevarplant-050312-120221.
- Grant R.H. Partitioning of biologically active radiation in plant canopies. Int. J. Biometeorol. 1997;(40):26-40.
- Leduc N., Roman H., Barbier F., Péron T., Huché-Thélier L., Lothier J. et al. Light signaling in bud outgrowth and branching in plants. Plants. 2014;(3):223. https://doi.org/10.3390/plants3020223
- Sasidharan R., Chinnappa C.C., Staal M., Elzenga J.T.M., Yokoyama R., Nishitani K. et al. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 2010;(154):978–990. https://doi.org/10.1104/pp.110.162057
- Bongers F.J., Evers J.B., Anten N.P.R., Pierik R. From shade avoidance responses to plant performance at vegetation level: using virtual plant modelling as a tool. New Phytol. 2014; (204):268–272. https://doi.org/10.1111/nph.1304
- Yujin Park, Erik S. Runkle. Far-red Radiation Promotes Growth of Seedlings by Increasing Leaf Expansion and Whole-plant Net Assimilation. Environmental and Experimental Botany. April 2017;(136):41-49. https://doi.org/10.1016/j.envexpbot.2016.12.013
- Tarakanov I.G., Kosobryukhov A.A., Tovstyko D.A., Anisimov A.A., Shulgina A.A., Sleptsov N.N., Kalashnikova E.A., Vassilev A.V., Kirakosyan R.N. Effects of light spectral quality on the micropropagated raspberry plants during ex vitro adaptation. Plants, 2021;10(10):2071. https://doi.org/10.3390/plants10102071
- Sergejeva D., Alsina I., Duma M., Dubova L., Augspole I., Erdberga I., Berzina K. Evaluation of different lighting sources on the growth and chemical composition of lettuce. Agronomy Research. 2018;16(3):892–899. https://doi.org/10.15159/AR.18.133
- Kim H.-J., Yang T., Choi S., Wang Y.-J., Lin M.-Y., Liceaga A.M. Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes. Scientia Horticulturae. 2020;(261):108985. https://doi.org/10.1016/j.scienta.2019.108985
- Kurepin L.V., Emery R.J., Pharis R.P., Reid D.M. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J Exp Bot. 2007;58(8):2145-57. https://doi.org/10.1093/jxb/erm068
- Feng Yanga, Lingyang Fenga, Qinlin Liua, Xiaoling Wua, Yuanfang Fana,, Muhammad Ali Razaa, Yajiao Chenga, Junxu Chena, Xiaochun Wanga, Taiwen Yonga, Weiguo Liua, Jiang Liua, Junbo Dua, Kai Shua, Wenyu Yanga. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany. 2018;(150):79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008
- Zelenkov V.N., Vernik P.A., Latushkin V.V. Creating closed technobioecosystems (synergotron class) as a modern direction of using digital technologies for the development of Agrarian Science and solving tasks of the agrarian-industrial complex of Russia. IOP Conf. Series: Earth and Environmental Science. 2019;(274):12101. https://doi.org/10.1088/1755-1315/274/1/
- 14 Гольцев В.Н., Каладжи Х.М., Кузманова М.А. Аллахвердиев С.И. Переменная и замедленная флуоресценция хлорофилла а – теоретические основы и практическое приложение в исследовании растений. М. – Ижевск: Институт компьютерных исследований, 2014. 220 с. [Goltsev V.N., Kaladzhi H.M., Kuzmanova M.A. Allahverdiev S.I. Variable and delayed fluorescence of chlorophyll a – theoretical foundations and practical application in plant research. M.–Izhevsk: Institute of Computer Research, 2014. 220 p. (In Russ.)]
- Carvalho R.F., Campos M.L., Azevedo R.A. The role of phytochrome in stress tolerance. J. Integr. Plant Biol. 2011;53(12):920–929. https://doi.org/10.1111/j.1744-7909.2011.01081.x.
- Kreslavski V.D., Los D.A., Schmitt F.-J., Zharmukhamedov S.K., Kuznetsov V.V., Allakhverdiev S.I. The impact of the phytochromes on photosynthetic processes. Biochim Biophys Acta Bioenerg. 2018 May;1859(5):400-408. https://doi.org/10.1016/j.bbabio.2018.03.003.
- Franklin K.A., Larner V.S., Whitelam G.C. The signal transducing photoreceptors of plants. Int. J. Dev. Biol. 2005;49(5-6):653-64. https://doi.org/10.1387/ijdb.051989kf
- Li Q., Kubota C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009;67(1):59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
- Heraut-Bron V., Robin C., Varlet-Grancher C., Afif D., Guckert A.. Light quality (red:far-red ratio): does it affect photosynthetic activity, net CO2 assimilation, and morphology of young white clover leaves? Canadian Journal of Botany. February 2011;77(10):1425-1431. https://doi.org/10.1139/b99-099
- Zhen S.Y., van Iersel M.W. Far-red light is needed for efficient photochemistry and photosynthesis. J. Plant Physiol. 2017;(209):115-122. https://doi.org/10.1016/j.jplph.2016.12.004
- Ballaré C.L., Scopel A.L., Sánchez R.A. Plant photomorphogenesis in canopies, crop growth, and yield. HortScience. 1997;(30):1172–1181.
- Marchiori P.E.R., Machado, E.C., Ribeiro, R.V. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Research. January 2013;(155):30–37. https://doi.org/10.1016/j.fcr.2013.09.025
- Yang F., Huang S., Gao R.C., Liu W.G., Yong T.W., Wang X.C., Wu X.L., Yang W.Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crop Res. 2014;(155):45–253. https://doi.org/10.1016/j.fcr.2013.08.011