Влияние высоты фермы на область безопасных частот статически определяемой плоской фермы
Автор: Луонг С.Л., Кирсанов М.Н.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 1 (110), 2024 года.
Бесплатный доступ
Объектом исследования является статически определенная симметричная плоская модель. Предположим, что стержни фермы имеют одинаковую жесткость и поперечное сечение, а массы фермы равномерно распределены в их узлах.
Ферма, клен, собственная частота, метод Данкерли, спектры собственных частот, упрощенный метод, аналитическое решение, резонансный безопасный диапазон
Короткий адрес: https://sciup.org/143182727
IDR: 143182727 | DOI: 10.4123/CUBS.110.3
Список литературы Влияние высоты фермы на область безопасных частот статически определяемой плоской фермы
- Komerzan E.V., Lushnov N.A., Osipova T.S. (2022) Analytical calculation of the deflection of a planar truss with an arbitrary number of panels. Structural mechanics and structures, 33, 17-25. https://doi.org/10.36622/VSTU.2022.33.2.002
- Kirsanov M.N., Luong Cong Luan (2022) Deflection and the lower limit of the fundamental frequency of natural vibrations of a beam truss. Structural mechanics and structures, 35, 24-33. https://doi.org/10.36622/VSTU.2022.35.4.003
- Komerzan E. V., Sviridenko О. V. (2022) Static deformations of the truss of a composite spatial frame. Analytical solutions. Structural mechanics and structures, 35, 40-48. https://doi.org/10.36622/VSTU.2022.35.4.005
- Kirsanov M. (2022) Formulas for calculating the deflection and displacement of a planar truss support with short studs in a lattice. Construction of Unique Buildings and Structures, 104, 10403. https://doi.org/10.4123/CUBS.104.3
- Rakhmatulina, A.R., Smirnova, A.A. (2017) The dependence of the deflection of the arched truss loaded on the upper belt, on the number of panels. Science Almanace, 28, 268–271. https://doi.org/10.17117/na.2017.02.03.268
- Shchigol E.D. (2023) The formula for the lower estimate of the natural oscillations of a flat regular girder truss with a rectilinear upper belt //Structural mechanics and structures, 37, 46-53. https://doi.org/10.36622/VSTU.2023.37.2.005
- Komerzan, E. V., Maslov, A.N. (2023) Analytical evaluation of a regular truss natural oscillations fundamental frequency. Structural Mechanics and Structures, 372, 17–26, https://doi.org/10.36622/VSTU.2023.37.2.002
- Vorobev O. (2020) Bilateral analytical estimation of first frequency of a plane truss. Construction of Unique Buildings and Structures, 92, 9204. https://doi.org/10.18720/CUBS.92.4
- Kirsanov, M.; Luong, C. (2023) Natural frequency spectra of spatial structure. Construction of Unique Buildings and Structures, 106, 10604. https://doi.org/10.4123/CUBS.106.4
- Kirsanov M. (2023) Simplified Dunkerley method for estimating the first oscillation frequency of a regular truss // Construction of Unique Buildings and Structures, 108, 10801. https://doi.org/10.4123/CUBS.108.1
- Rutenberg, A. A (1976) lower bound for Dunkerley’s formula in continuous elastic systems. Journal of Sound and Vibration, 45, 249–252. https://doi.org/10.1016/0022-460X(76)90599-X
- Low, K.H. (2000) Modified Dunkerley formula for eigenfrequencies of beams carrying concentrated masses. International Journal of Mechanical Sciences, 42, 1287–1305. https://doi.org/10.1016/S0020-7403(99)00049-1
- Zotos, K. (2007) Performance comparison of Maple and Mathematica. Applied Mathematics and Computation, 188, 1426–1429. https://doi.org/10.1016/j.amc.2006.11.008
- Matrosov, A. V. (2019) Computational Peculiarities of the Method of Initial Functions. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 37–51. https://doi.org/10.1007/978-3-030-24289-3_4
- Goloskokov, D.P., Matrosov, A. V. (2018) Approximate analytical approach in analyzing an orthotropic rectangular plate with a crack. Materials Physics and Mechanics, 36, 137–141. https://doi.org/10.18720/MPM.3612018_15
- Galileev, S.M., Matrosov, A. V. (1997) Method of initial functions: Stable algorithms in the analysis of thick laminated composite structures. Composite Structures, 39, 255–262. https://doi.org/10.1016/S0263-8223(97)00108-6
- Kirsanov, M. (2022) Model of a Spatial Dome Cover. Deformations and Oscillation Frequency. Construction of Unique Buildings and Structures, 99, 9904. https://doi.org/10.4123/CUBS.99.4
- Hutchinson, R.G., Fleck, N.A. (2005.) Microarchitectured cellular solids - The hunt for statically determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 85, 607–617. https://doi.org/10.1002/zamm.200410208
- Hutchinson, R.G., Fleck, N.A. (2006) The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids, 54, 756–782. https://doi.org/10.1016/j.jmps.2005.10.008
- Tinkov, D. V. (2016) The Optimum Geometry of the Flat Diagonal Truss Taking into Account the Linear Creep. Magazine of Civil Engineering, St-Petersburg State Polytechnical University, 61, 25–32.
- Mirsaidov, M.M., Abdikarimov, R.A., Vatin, N.I., Zhgutov, V.M., Khodzhaev, D.A. and Normuminov, B.A. (2018) Nonlinear Parametric Oscillations of Viscoelastic Plate of Variable Thickness. Magazine of Civil Engineering, St-Petersburg State Polytechnical University, 82, 112–126. https://doi.org/10.18720/MCE.82.11
- Liu, M., Cao, D. and Zhu, D. (2021) Coupled Vibration Analysis for Equivalent Dynamic Model of the Space Antenna Truss. Applied Mathematical Modelling, Elsevier Inc., 89, 285–298. https://doi.org/10.1016/j.apm.2020.07.013
- Trainor, P.G.S., Shah, A.H. and Popplewell, N. (1986) Estimating the Fundamental Natural Frequency of Towers by Dunkerley’s Method. Journal of Sound and Vibration, Academic Press, 109, 285–292. https://doi.org/10.1016/S0022-460X(86)80009-8.
- Goloskokov, D.P. (2014) Analyzing Simply Supported Plates Using Maple System. 2014 International Conference on Computer Technologies in Physical and Engineering Applications, ICCTPEA 2014 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 55–56. https://doi.org/10.1109/ICCTPEA.2014.6893273.
- Dai, Qiao. (2021) Analytical Dependence of Planar Truss Deformations on the Number of Panels. AlfaBuild, 17 .https://doi.org/10.34910/ALF.17.1
- Galishnikova, V. V and Pahl, P.J. (2018) Analysis of Frame Buckling without Sidesway Classification. Structural Mechanics of Engineering Constructions and Buildings, 14, 299–312. https://doi.org/10.22363/1815-5235-2018-14-4-299-312.
- Kaveh, A. (2013) Optimal Analysis of Structures by Concepts of Symmetry and Regularity. Optimal Analysis of Structures by Concepts of Symmetry and Regularity, Springer-Verlag Wien, 9783709115, 1–463. https://doi.org/10.1007/978-3-7091-1565-7.
- Han, Q.H., Xu, Y., Lu, Y., Xu, J. and Zhao, Q.H. (2015) Failure Mechanism of Steel Arch Trusses: Shaking Table Testing and FEM Analysis. Engineering Structures, Elsevier Ltd, 82, 186–198. https://doi.org/10.1016/j.engstruct.2014.10.013.
- Enrique Luco, J. (2013) Bounds for Natural Frequencies, Dunkerley’s Formula and Application to Soil-Structure Interaction. Soil Dynamics and Earthquake Engineering, 47, 32–37. https://doi.org/10.1016/J.SOILDYN.2012.08.007.
- Rutenberg, A. (1976) A Lower Bound for Dunkerley’s Formula in Continuous Elastic Systems. Journal of Sound and Vibration, Academic Press, 45, 249–252. https://doi.org/10.1016/0022-460X(76)90599-X
- Levy, C. (1991) An Iterative Technique Based on the Dunkerley Method for Determining the Natural Frequencies of Vibrating Systems. Journal of Sound and Vibration, Academic Press, 150, 111–118. https://doi.org/10.1016/0022-460X(91)90405-9.
Статья научная