Водоотводные мостовые лотки из полимера, армированного стекловолокном: физические, механические и эксплуатационные свойства

Автор: Кавказский В.Н., Кирсанова Т.А., Усанова К.Ю., Вафаева Х.М., Васюткин Е.С.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является лоток мостовой водоотводной из стеклопластика. Целью данной работы является исследование физико-механических характеристик стеклопластика, используемого для изготовления лотков мостовых водоотводных, и определение эксплуатационных характеристик типового подвесного лотка водоотводной.

Композит из стекловолокна, полимер, армированный стекловолокном, система дренажа мостов, прочность, модуль упругости, водопоглощение, плотность, твердость по Барколу

Короткий адрес: https://sciup.org/143182712

IDR: 143182712   |   DOI: 10.4123/CUBS.109.19

Список литературы Водоотводные мостовые лотки из полимера, армированного стекловолокном: физические, механические и эксплуатационные свойства

  • Ren, D., Shang, J., Xu, J., Huang, M., Chen, X., Cao, C. and Ai, C. (2023) Detection and Quantitative Evaluation of Pumping Distress on Bridge Deck Pavement through Field and Laboratory Experiments. Construction and Building Materials, Elsevier, 378, 131208. https://doi.org/10.1016/J.CONBUILDMAT.2023.131208.
  • Aksyonkin, V.I., Zolotarev, M.L. and Krasnov, V.S. (2017) Development of Principles For Ensuring Transport Security of The Russian Federation In The Arctic [Razvitie Principov Obespecheniya Transportnoj Bezopasnosti Rossijskoj Federacii v Arktike]. Scientific problems of logistics and logistics of the RF Armed Forces [Nauchnye problemy MTO VS RF], 231–239. https://www.elibrary.ru/item.asp?id=30043370.
  • Bakr, A.R., Fu, G.Y. and Hedeen, D. (2020) Water Quality Impacts of Bridge Stormwater Runoff from Scupper Drains on Receiving Waters: A Review. Science of The Total Environment, Elsevier, 726, 138068. https://doi.org/10.1016/J.SCITOTENV.2020.138068.
  • Aksyonkin, V.I., Zolotarev, M.L. and Myshin, A.V. (2018) Technical Standards Documents of Common Technical Requirements to Road Technical Means. Scientific problems of logistics and logistics of the RF Armed Forces [Nauchnye problemy MTO VS RF], 3(9), 132–142. https://www.elibrary.ru/item.asp?id=36499321.
  • Frolov, A.N. (2020) Special Features of Calculating Rain and Snowmelt Runoff from Ash Dumps. Proceeding of the VNIIG, Vol. 297., 36–47. https://www.elibrary.ru/item.asp?id=44351723.
  • Vasyutkin E.S, Galushko, M.M., Lazarev, Yu.G., Dzhalalov, A.I. and Burin, D.L. (2022) Strength Calculation of a Suspended Bridge Tray from Polymer Composite Materials [Prochnostnoj Raschyot Podvesnogo Mostovogo Lotka Iz Polimernyh Kompozicionnyh Materialov]. Route navigator [Putevoj navigator], 51, 50–53. https://www.elibrary.ru/item.asp?id=48698591.
  • Tang, Y., Bao, Y., Zheng, Z., Zhang, J. and Cai, Y. (2022) Performance Assessment of Deteriorating Reinforced Concrete Drainage Culverts: A Case Study. Engineering Failure Analysis, Pergamon, 131, 105845. https://doi.org/10.1016/J.ENGFAILANAL.2021.105845.
  • Liu, D., Wang, C., Gonzalez-Libreros, J., Guo, T., Cao, J., Tu, Y., Elfgren, L. and Sas, G. (2023) A Review of Concrete Properties under the Combined Effect of Fatigue and Corrosion from a Material Perspective. Construction and Building Materials, Elsevier, 369, 130489. https://doi.org/10.1016/J.CONBUILDMAT.2023.130489.
  • Firouzi, A., Abdolhosseini, M. and Ayazian, R. (2020) Service Life Prediction of Corrosion-Affected Reinforced Concrete Columns Based on Time-Dependent Reliability Analysis. Engineering Failure Analysis, Pergamon, 117, 104944. https://doi.org/10.1016/J.ENGFAILANAL.2020.104944.
  • Sun, B., Xiao, R., Guo, J. and Zhao, Q. (2019) Probabilistic Chloride Penetration Models and Corrosion Initiation Probability of RC Bridge Based on Long-Term Test Data. Journal of Bridge Engineering, American Society of Civil Engineers, 24, 04019012. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001370.
  • Zunita, M. and Kevin, Y.J. (2022) Ionic Liquids as Corrosion Inhibitor: From Research and Development to Commercialization. Results in Engineering, Elsevier, 15, 100562. https://doi.org/10.1016/J.RINENG.2022.100562.
  • Soufeiani, L., Foliente, G., Nguyen, K.T.Q. and San Nicolas, R. (2020) Corrosion Protection of Steel Elements in Façade Systems – A Review. Journal of Building Engineering, Elsevier, 32, 101759. https://doi.org/10.1016/J.JOBE.2020.101759.
  • Li, L., Mahmoodian, M., Li, C.Q. and Robert, D. (2018) Effect of Corrosion and Hydrogen Embrittlement on Microstructure and Mechanical Properties of Mild Steel. Construction and Building Materials, Elsevier, 170, 78–90. https://doi.org/10.1016/J.CONBUILDMAT.2018.03.023.
  • Hemmasian Ettefagh, A., Guo, S. and Raush, J. (2021) Corrosion Performance of Additively Manufactured Stainless Steel Parts: A Review. Additive Manufacturing, Elsevier, 37, 101689. https://doi.org/10.1016/J.ADDMA.2020.101689.
  • Chuaiphan, W. and Srijaroenpramong, L. (2020) Evaluation of Microstructure, Mechanical Properties and Pitting Corrosion in Dissimilar of Alternative Low Cost Stainless Steel Grade 204Cu and 304 by GTA Welding Joint. Journal of Materials Research and Technology, Elsevier, 9, 5174–5183. https://doi.org/10.1016/J.JMRT.2020.03.034.
  • Sharma, H., Kumar, A., Rana, S., Sahoo, N.G., Jamil, M., Kumar, R., Sharma, S., Li, C., Kumar, A., Eldin, S.M. and Abbas, M. (2023) Critical Review on Advancements on the Fiber-Reinforced Composites: Role of Fiber/Matrix Modification on the Performance of the Fibrous Composites. Journal of Materials Research and Technology, Elsevier, 26, 2975–3002. https://doi.org/10.1016/J.JMRT.2023.08.036.
  • Wu, G., Ren, Y., Du, J., Wang, H. and Zhang, X. (2023) Mechanical Properties and Failure Mechanism Analysis of Basalt-Glass Fibers Hybrid FRP Composite Bars. Case Studies in Construction Materials, Elsevier, 19, e02391. https://doi.org/10.1016/J.CSCM.2023.E02391.
  • Ding, S., Zou, B., Zhuang, Y., Wang, X., Feng, Z. and Liu, Q. (2023) Effect of Printing Design and Forming Thermal Environment on Pseudo-Ductile Behavior of Continuous Carbon/Glass Fibers Reinforced Nylon Composites. Composite Structures, Elsevier, 322, 117362. https://doi.org/10.1016/J.COMPSTRUCT.2023.117362.
  • Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. and Sanjayan, J. (2023) Applications of Natural and Synthetic Fiber Reinforced Polymer in Infrastructure: A Suitability Assessment. Journal of Building Engineering, Elsevier, 66, 105835. https://doi.org/10.1016/J.JOBE.2023.105835.
  • Karim, M.A., Abdullah, M.Z., Deifalla, A.F., Azab, M. and Waqar, A. (2023) An Assessment of the Processing Parameters and Application of Fibre-Reinforced Polymers (FRPs) in the Petroleum and Natural Gas Industries: A Review. Results in Engineering, Elsevier, 18, 101091. https://doi.org/10.1016/J.RINENG.2023.101091.
  • Bekker, А.Т. and Umansky, А.М. (2016) Application of Basalt-Plastic Reinforcement in the Structures of Offshore Hydroengineering Constructions. Izvestiya B.E. Vedeneev VNIIG, 282, 61–75. https://www.elibrary.ru/item.asp?id=27638901.
  • Biryukov, A.N., Dudurich, B.B., Kazakov, Yu.N. and Tokarev, N.V. (2017) Application of Composite Materials in the Construction, Renovation and Reconstruction of Objects Transport Infrastructure. Construction and road building machinery, 10, 46–52. https://www.elibrary.ru/item.asp?id=32398998.
  • Biryukov, A.N., Biryukov, D.V., Vasyutkin, E.S. and Belyi, A.A. (2019) Application of Composite Reinforcement for Concrete Structures [Primenenie Kompozitnoj Armatury Dlya Betonnyh Konstrukcij]. Composite systems for underground and civil construction sites [Kompozitnye sistemy na ob"ektah podzemnogo i grazhdanskogo stroitel'stva], 61–66. https://elibrary.ru/item.asp?id=41612966.
  • Galushko, M.M., Ledyaev, A.P., Korolenok, L.M. and Kuleshov, D.E. (2019) Earthquake-Resistant Structures of Linings of Underground Structures with Composite Reinforcement [Sejsmostojkie Konstrukcii Obdelok Podzemnyh Sooruzhenij s Kompozitnym Armirovaniem]. Composite systems for underground and civil construction sites [Kompozitnye sistemy na ob"ektah podzemnogo i grazhdanskogo stroitel'stva], 94–101. https://www.elibrary.ru/item.asp?id=41558854.
  • Nurmukhametov, R.R., Vatin, N.I., Mirsayapov, I.T., Vasyutkin, E.S., Burin, D.L. and Vasyutkin, S.F. (2020) FRP Helical Micro Screw Pile with Cast Iron Pile Cap: Review. Construction of Unique Buildings and Structures, 90, 8903–8903. https://doi.org/10.18720/CUBS.89.3.
  • Vatin, N., Ilizar, M. and Nurmukhametov, R. (2020) Composite Helical Micro Pile's Bearing Capacity. IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 890. https://doi.org/10.1088/1757-899X/890/1/012037.
  • Fang, Y., Chen, P., Huo, R., Liang, Y., Wang, L. and Liu, W. (2018) Hygrothermal Ageing of Polymeric Sandwich Structures Used in Structural Engineering. Construction and Building Materials, Elsevier, 165, 812–824. https://doi.org/10.1016/J.CONBUILDMAT.2018.01.072.
  • Ferdous, W., Manalo, A. and Aravinthan, T. (2017) Bond Behaviour of Composite Sandwich Panel and Epoxy Polymer Matrix: Taguchi Design of Experiments and Theoretical Predictions. Construction and Building Materials, Elsevier, 145, 76–87. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.244.
  • Yuan, G., Bai, Y., Jia, Z., Lau, K. tak and Hung, P. yan. (2019) Structural Deformation Performance of Glass Fiber Reinforced Polymer Composite Beam Actuated by Embedded Indented SMA Wires. Composites Part B: Engineering, Elsevier, 159, 284–291. https://doi.org/10.1016/J.COMPOSITESB.2018.09.101.
  • Biryukov, A.N., Dudurich, B.B. and Gricuk, A.P. (2018) Application of Polymer Lining Sheets for Repairs and Reconstructions of Operating Military Infrastructure Facilities [Primenenie Polimernyh Futerovochnyh Listov Dlya Provedeniya Remontov i Rekonstrukcij Ekspluatiruemyh Ob"ektov Voennoj Infrastruktury]. Current state of operational maintenance of barracks and housing stock of the Russian Defense Ministry and innovative ways of prospects for its development [Sovr. sost. ekspluatac. soderzhaniya kazarmenno-zhilishch. fonda MO Rossii], 261–268. https://www.elibrary.ru/item.asp?id=35623859.
  • Galushko, M.M., Vasyutkin, E.S., Beloglazov, A.P. and Chernyavskij, V.L. (2020) Application of Cellular Structures from Polymeric Composite Materials for Reinforcement of Ice Massives. Current problems of military scientific research [Aktual'nye problemy voenno-nauchnyh issledovanij], 11(12), 505–514. https://www.elibrary.ru/item.asp?id=41558854.
  • SP 32.13330.2018 Sewerage. Pipelines and Wastewater Treatment Plants. URL: Https://Docs.Cntd.Ru/Document/554820821.
  • Recommendations for Calculating Systems for the Collection, Disposal and Purification of Surface Runoff from Residential Areas, Enterprise Sites and Determining the Conditions for Its Release into Water Bodies [Rekomendacii Po Raschyotu Sistem Sbora, Otvedeniya i Ochistki Poverhnostnogo Stoka s Selitebnyh Territorij, Ploshchadok Predpriyatij i Opredeleniyu Uslovij Vypuska Ego v Vodnye Ob"ekty]. M. 2014. https://files.stroyinf.ru/Data2/1/4293769/4293769496.pdf.
  • Abbood, I.S., Odaa, S.A., Hasan, K.F. and Jasim, M.A. (2021) Properties Evaluation of Fiber Reinforced Polymers and Their Constituent Materials Used in Structures – A Review. Materials Today: Proceedings, Elsevier, 43, 1003–1008. https://doi.org/10.1016/J.MATPR.2020.07.636.
  • Gopalakrishnan, T. and Chandrasekaran, M. (2023) Analysis of Low Velocity Impact Response of Glass Fiber Reinforced Epoxy Resin Composite with Shape Memory Alloy Incorporation. Materials Today: Proceedings, Elsevier. https://doi.org/10.1016/J.MATPR.2023.05.338.
  • Han, Z., Jeong, S., Noh, J. and Oh, D. (2020) Comparative Study of Glass Fiber Content Measurement Methods for Inspecting Fabrication Quality of Composite Ship Structures. Applied Sciences 2020, Vol. 10, Page 5130, Multidisciplinary Digital Publishing Institute, 10, 5130. https://doi.org/10.3390/APP10155130.
  • Chen, R.S., Muhammad, Y.H. and Ahmad, S. (2021) Physical, Mechanical and Environmental Stress Cracking Characteristics of Epoxy/Glass Fiber Composites: Effect of Matrix/Fiber Modification and Fiber Loading. Polymer Testing, Elsevier, 96, 107088. https://doi.org/10.1016/J.POLYMERTESTING.2021.107088.
  • Nayak, R.K., Mahato, K.K. and Ray, B.C. (2016) Water Absorption Behavior, Mechanical and Thermal Properties of Nano TiO2 Enhanced Glass Fiber Reinforced Polymer Composites. Composites Part A: Applied Science and Manufacturing, Elsevier, 90, 736–747. https://doi.org/10.1016/J.COMPOSITESA.2016.09.003.
  • Manfredi, L.B., De Santis, H. and Vázquez, A. (2008) Influence of the Addition of Montmorillonite to the Matrix of Unidirectional Glass Fibre/Epoxy Composites on Their Mechanical and Water Absorption Properties. Composites Part A: Applied Science and Manufacturing, Elsevier, 39, 1726–1731. https://doi.org/10.1016/J.COMPOSITESA.2008.07.016.
  • Gnanavelbabu, A., Saravanan, P., Rajkumar, K., Sabarinathan, P. and Karthikeyan, S. (2018) Mechanical Strengthening Effect by Various Forms and Orientation of Glass Fibre Reinforced Isopthalic Polyester Polymer Composite. Materials Today: Proceedings, Elsevier, 5, 26850–26859. https://doi.org/10.1016/J.MATPR.2018.08.167.
  • Devi, P.A., Reddy, P.R. and Prasad, K.E. (2023) Hardness and Impact Testing of Glass Epoxy Nanoclay Composites. Materials Today: Proceedings, Elsevier. https://doi.org/10.1016/J.MATPR.2023.09.166.
  • Bhat, R., Mohan, N., Sharma, S., Pratap, A., Keni, A.P. and Sodani, D. (2019) Mechanical Testing and Microstructure Characterization of Glass Fiber Reinforced Isophthalic Polyester Composites. Journal of Materials Research and Technology, Elsevier, 8, 3653–3661. https://doi.org/10.1016/J.JMRT.2019.06.003.
  • Satkar, A.R., Mache, A. and Kulkarni, A. (2022) Numerical Investigation on Perforation Resistance of Glass-Carbon/Epoxy Hybrid Composite Laminate under Ballistic Impact. Materials Today: Proceedings, Elsevier, 59, 734–741. https://doi.org/10.1016/J.MATPR.2021.12.464.
  • Saravanakumar, K., Subramanian, H., Arumugam, V. and Dhakal, H.N. (2019) Influence of Milled Glass Fillers on the Impact and Compression after Impact Behavior of Glass/Epoxy Composite Laminates. Polymer Testing, Elsevier, 75, 133–141. https://doi.org/10.1016/J.POLYMERTESTING.2019.02.007.
  • Mirbagheri, M., Rahmani, O. and Mirbagheri, Y. (2022) Estimation of Residual Tensile Strength of Composite Laminate after Low-Velocity Impact Using Visually Inspection. Engineering Failure Analysis, Pergamon, 131, 105898. https://doi.org/10.1016/J.ENGFAILANAL.2021.105898.
  • Yorseng, K., Rangappa, S.M., Pulikkalparambil, H., Siengchin, S. and Parameswaranpillai, J. (2020) Accelerated Weathering Studies of Kenaf/Sisal Fiber Fabric Reinforced Fully Biobased Hybrid Bioepoxy Composites for Semi-Structural Applications: Morphology, Thermo-Mechanical, Water Absorption Behavior and Surface Hydrophobicity. Construction and Building Materials, Elsevier, 235, 117464. https://doi.org/10.1016/J.CONBUILDMAT.2019.117464.
  • Lu, J.J., Shi, Y.C., Guan, J.P., Dang, R.Q., Yu, L.C., Wang, H.Q., Hu, N. Di and Shen, X.J. (2023) Enhanced Mechanical Properties of Ramie Fabric/Epoxy Composite Laminates by Silicon Polymer. Industrial Crops and Products, Elsevier, 199, 116778. https://doi.org/10.1016/J.INDCROP.2023.116778.
  • Arslan, C. and Dogan, M. (2018) The Effects of Silane Coupling Agents on the Mechanical Properties of Basalt Fiber Reinforced Poly(Butylene Terephthalate) Composites. Composites Part B: Engineering, Elsevier, 146, 145–154. https://doi.org/10.1016/J.COMPOSITESB.2018.04.023.
  • Karaş, B., Smith, P.J., Fairclough, J.P.A. and Mumtaz, K. (2022) Additive Manufacturing of High Density Carbon Fibre Reinforced Polymer Composites. Additive Manufacturing, Elsevier, 58, 103044. https://doi.org/10.1016/J.ADDMA.2022.103044.
  • Genna, S., Papa, I., Lopresto, V. and Tagliaferri, V. (2020) Mechanical Characterisation of CFRP Laminates with Recycled Carbon Fiber Obtained by Resin Infusion under Flexible Tooling (RIFT) Technology. Composites Science and Technology, Elsevier, 199, 108328. https://doi.org/10.1016/J.COMPSCITECH.2020.108328.
  • Yu, L., Li, Y., Chen, L., Kang, C. and Zhang, T. (2015) Experimental Study on Mechanical Properties of FRP Components and Comparison of Steel Properties. Atlantis Press. https://doi.org/10.2991/ICADME-15.2015.317.
  • Naseri Ghalghachi, R., Showkati, H. and Eyvazinejad Firouzsalari, S. (2023) Experimental, Numerical and Analytical Study on Axial Compression Buckling of Chopped Glass Fibre-Reinforced Polymer Cylindrical Shells. Structures, Elsevier, 58, 105368. https://doi.org/10.1016/J.ISTRUC.2023.105368.
  • Liu, Z., Simonetto, E., Ghiotti, A. and Bruschi, S. (2023) Inter-Ply Friction Behaviour in the Temperature Assisted Forming of Magnesium/Glass Fibre Reinforced Thermoplastic Polymer Laminates. Composites Part A: Applied Science and Manufacturing, Elsevier, 173, 107635. https://doi.org/10.1016/J.COMPOSITESA.2023.107635.
  • Tryasunov, V.S., Shultseva, E.L., Baganik, A.M. and Polyakova, Y. V. (2022) Properties of the Fiberglass Based on the Fire-Resistant Polyester Resins of Russian Brands Arkpol 40 M and Polymer 3088 Ta. Materials Science Issues [Voprosy materialovedeniya], FSUE CRISM Prometey, 0, 147–156. https://doi.org/10.22349/1994-6716-2022-109-1-147-156.
  • Tryasunov, V.S., Lishevich, I. V., Nikolaev, G.I., Shultseva, E.L., Baruev, V.E. and Makhanko, A. V. (2020) On the Definition of Fire-Safety Characteristics for Three-Layer Composite Polymers in Shipbuilding Structures. Materials Science Issues [Voprosy Materialovedeniya], FSUE CRISM Prometey, 139–147. https://doi.org/10.22349/1994-6716-2020-101-1-139-147.
  • Anisimov, A.V., Tryasunov, V.S., Shultceva, E.L., Sokolov, Ju.V. and Mudry, F.V. (2017) Epoxyvinylester Binder for Fire Resistant Marine Fiberglass Plastics. Materials Science Issues, 4(92), 120–130. http://www.crism-prometey.ru/science/editions/Russian4(92)2017.pdf.
Еще
Статья научная