Возможности дополнительной выработки электроэнергии в составе конденсационной паровой турбины типа К-65-12,8 УТЗ с помощью низкотемпературного теплового двигателя на C3H8
Автор: Гафуров А.М., Зайнуллин Р.Р.
Журнал: Форум молодых ученых @forum-nauka
Статья в выпуске: 6 (10), 2017 года.
Бесплатный доступ
Представлены результаты исследования способа работы низкотемпературного теплового двигателя на сжиженном C3H8 по выработке электроэнергии в составе конденсационной паровой турбины типа К-65-12,8 УТЗ при температуре окружающей среды до минус 50°С.
Паровая турбина, низкотемпературный тепловой двигатель, сжиженный пропан
Короткий адрес: https://sciup.org/140279084
IDR: 140279084
Текст научной статьи Возможности дополнительной выработки электроэнергии в составе конденсационной паровой турбины типа К-65-12,8 УТЗ с помощью низкотемпературного теплового двигателя на C3H8
В настоящее время низкокипящие рабочие тела (НРТ) находят широкое применение в тепловых двигателях по утилизации низко- и среднепотенциальной теплоты на уровне 80-160°С с выработкой электроэнергии, что в основном применимо для геотермальной энергетики.
Большинство применяемых тепловых двигателей на НРТ состоят из нескольких основных элементов - насос, теплообменник-испаритель, турбина, теплообменник-рекуператор (зависит от свойств НРТ) и теплообменник-конденсатор. Несмотря на различия в конструкциях, эти основные элементы образуют основу для эффективной работы и осуществления процессов теплового контура органического цикла Ренкина. В основных элементах происходят характерные изменения свойств НРТ, где эффективность цикла можно вычислить, зная температуру подведенной теплоты от источника и отведенной теплоты из цикла [1, 2].
Проводятся исследования и разработки новых систем охлаждения конденсаторов паровых турбин, в которых промежуточным теплоносителем вместо воды служит низкокипящее рабочее тело, которое испаряется в поверхностном конденсаторе паровой турбины, расширяется в турбодетандере и конденсируется затем в охладительной башне, где теплота конденсации передается наружному воздуху. Однако основной не решенной задачей является выбор оптимального НРТ для осуществления термодинамического цикла.
В основном проблема связано с тем, что в конденсаторах современных паровых турбин типа К-65-12,8 УТЗ (Уральский турбинный завод) поддерживается низкое давление пара равное 5,6 кПа, что соответствует температуре насыщения в 35°С, а сам процесс конденсации 1 кг отработавшего в турбине пара сопровождается высвобождением скрытой теплоты парообразования (ранее затраченная на испарение) равная примерно 2133 кДж/кг, которая отводиться с помощью охлаждающей воды в окружающую среду. Например, в зимний период времени конденсаторы паровых турбин типа К-65-12,8 являются источниками сбросной низкопотенциальной теплоты с температурой в 35°С, а окружающая среда – прямой источник холода с температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью низкотемпературного теплового двигателя с замкнутым контуром циркуляции на НРТ [3].
Таким образом, предлагается использование низкотемпературного теплового двигателя в составе современной конденсационной паровой турбины типа К-65-12,8 УТЗ, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в холодном источнике (конденсаторе) второму контуру на низкокипящем рабочем теле – C3H8. Причем охлаждение низкокипящего рабочего газа C3H8 осуществляют наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [4].
Способ работы низкотемпературного теплового двигателя на C3H8 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (3-10%) при давлении в 5,6 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. Полученный основной конденсат с помощью конденсатного насоса направляют в систему регенерации. В качестве охлаждающей жидкости используется сжиженный пропан C3H8, который сжимают в насосе до давления 0,9-1,2 МПа и направляют в конденсатор паровой турбины типа К-65-12,8 УТЗ для охлаждения отработавшего в турбине пара. При этом расход пара в конденсатор может составлять до 40 кг/с на максимальном конденсационном режиме. Конденсация 40 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 85,32 МВт, которая отводится на нагрев и испарение сжиженного газа C3H8 до температуры перегретого газа в 29,58°С. На выходе из конденсатора паровой турбины полученный перегретый газ C3H8 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный пропан C3H8 направляют в теплообменник-конденсатор воздушного охлаждения, где в процессе охлаждения газообразного пропана C3H8 ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный пропан направляют в насос и цикл повторяется [5].
На рис. 1, 2 представлены графики расчетных показателей по выработке (потреблению) полезной электрической мощности низкотемпературным тепловым двигателем и абсолютного электрического КПД турбогенератора при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-65-12,8 УТЗ контуром циркуляции на сжиженном пропане в зависимости от температуры наружного воздуха в зимний период времени.

Рис. 1. Для турбин типа К-65-12,8 с расходом пара в конденсатор 40 кг/с.

Рис. 2. Для турбин типа К-65-12,8 с расходом пара в конденсатор 40 кг/с.
Абсолютный электрический КПД (рис. 2) турбогенератора низкотемпературного теплового двигателя варьируется от 3,32% до 5,56%. При этом использование низкотемпературного теплового двигателя с замкнутым контуром циркуляции на C 3 H 8 в составе конденсационной паровой турбины типа К-65-12,8 УТЗ позволяет дополнительно вырабатывать электроэнергию на станции (рис. 1) в диапазоне температур окружающей среды от 268,15 К (-5°С) до 223,15 К (-50°С).
Список литературы Возможности дополнительной выработки электроэнергии в составе конденсационной паровой турбины типа К-65-12,8 УТЗ с помощью низкотемпературного теплового двигателя на C3H8
- Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140405 04.12.2013.
- Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140435 04.12.2013.
- Гафуров А.М. Использование сбросной низкопотенциальной теплоты для повышения экономической эффективности ТЭС в зимний период времени. // Энергетика Татарстана. - 2014. - № 3-4 (35-36). - С. 69-76.
- Гафуров А.М. Возможности повышения выработки электроэнергии на Заинской ГРЭС в зимний период времени. Сборник научных трудов по итогам международной научно-практической конференции «Актуальные вопросы технических наук в современных условиях». - 2015. - С. 82-85.
- Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС в работу низкотемпературного теплового двигателя с замкнутым контуром. // Вестник Казанского государственного энергетического университета. - 2016. - №3 (31). - С. 73-78.