Возможности дополнительной выработки электроэнергии в составе конденсационной паровой турбины типа К-1200-6,8/50 с помощью низкотемпературного теплового двигателя на СО2
Автор: Гафуров А.М., Зайнуллин Р.Р.
Журнал: Форум молодых ученых @forum-nauka
Статья в выпуске: 6 (10), 2017 года.
Бесплатный доступ
Представлены результаты исследования способа работы низкотемпературного теплового двигателя на сжиженном СО2 по выработке электроэнергии в составе конденсационной паровой турбины типа К-1200-6,8/50 при температуре окружающей среды до минус 50°С.
Паровая турбина, низкотемпературный тепловой двигатель, сжиженный углекислый газ
Короткий адрес: https://sciup.org/140279087
IDR: 140279087
Текст научной статьи Возможности дополнительной выработки электроэнергии в составе конденсационной паровой турбины типа К-1200-6,8/50 с помощью низкотемпературного теплового двигателя на СО2
engineer of the I category «Management of research work» Zainullin R.R. candidate of physico-mathematical sciences senior lecturer of department «industrial electronics and lighting» «KSPEU» Russia, Kazan POSSIBILITIES OF ADDITIONAL ELECTRICITY PRODUCTION AS A
PART OF THE CONDENSATION STEAM TURBINE К-1200-6,8/50 BY MEANS OF THE LOW-TEMPERATURE HEAT ENGINE ON СО 2
Results of research of mode of work of the low-temperature heat engine are presented on the liquefied СО 2 on electricity production as a part of the condensation steam turbine К-1200-6,8/50 at ambient temperature to minus 50°C. Keywords: steam turbine, low-temperature heat engine, liquefied carbon dioxide gas.
В последнее время большое распространение получило применение тепловых двигателей на низкокипящих рабочих телах (НРТ). Главным достоинством НРТ является возможность его адаптации к различным источникам тепловой энергии. За счет варьирования рабочего тела его можно использовать в широком диапазоне температур и давлений [1].
Большинство тепловых двигателей на НРТ состоят из нескольких основных элементов - насос, теплообменник-испаритель, турбина, теплообменник-рекуператор (зависит от свойств НРТ) и теплообменник-конденсатор. Несмотря на различия в конструкциях, эти основные элементы образуют основу для эффективной работы и осуществления процессов теплового контура органического цикла Ренкина. В основных элементах происходят характерные изменения свойств НРТ, где эффективность цикла можно вычислить, зная температуру подведенной теплоты от источника и отведенной теплоты из цикла [2, 3].
В настоящее время одним из основных источников термального (теплового) загрязнения окружающей среды являются тепловые и атомные электростанции, которые нуждаются в большом количестве охлаждающей воды для осуществления процесса конденсации отработавшего в турбине пара. Поглощение тепловой энергии осуществляется путем прямой прокачки пресной озерной или речной воды через теплообменник-конденсатор паровой турбины, и затем возвращение её в естественные водоёмы без предварительного охлаждения. Например, для атомных электростанций мощностью 1000 МВт требуется озеро площадью 810 га, глубиной около 8,7 м.
Внедрение реакторов ВВЭР-1200 на Нововоронежской АЭС-2 и Ленинградской АЭС-2 потребовало создания более мощных паровых турбин типа К-1200-6,8/50 производства Ленинградского металлического завода (ЛМЗ), которые характеризуются значительным расходом пара в конденсатор равным около 960 кг/с. При этом потери теплоты в конденсаторе паровой турбины составляют примерно половины (45-50%) затрачиваемой теплоты в цикле. Таким образом, в конденсаторе паровой турбины типа К-1200-6,8/50 поддерживается низкое давление пара равное 5,0 кПа, что соответствует температуре насыщения в 32,87°С. Процесс конденсации 1 кг отработавшего в турбине пара сопровождается высвобождением скрытой теплоты парообразования (ранее затраченная на испарение) равная примерно 2136 кДж/кг, которая отводиться с помощью охлаждающей воды в окружающую среду. В зимний период времени конденсаторы паровых турбин типа К-1200-6,8/50 являются источниками сбросной низкопотенциальной теплоты с температурой в 32,87°С, а окружающая среда - прямой источник холода с температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью низкотемпературного теплового двигателя с замкнутым контуром циркуляции на НРТ [4, 5].
Предлагается использование низкотемпературного теплового двигателя в составе мощной конденсационной паровой турбины типа К-1200-6,8/50, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в холодном источнике (конденсаторе) второму контуру на низкокипящем рабочем теле - СО2. Причем охлаждение низкокипящего рабочего газа СО 2 осуществляют наружным воздухом окружающей среды при температуре от 0°С до минус 50°С [6].
Способ работы низкотемпературного теплового двигателя на СО2 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (10-14%) при давлении в 5,0 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. Полученный основной конденсат с помощью конденсатного насоса направляют в систему регенерации. В качестве охлаждающей жидкости используется сжиженный углекислый газ СО2, который сжимают в насосе до высокого давления и направляют в конденсатор паровой турбины типа К-1200-6,8/50 для охлаждения отработавшего в турбине влажного пара. Конденсация 960 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 2050 МВт, которая отводится на нагрев и испарение сжиженного газа СО2 до температуры перегретого газа в 28°С. На выходе из конденсатора паровой турбины полученный перегретый газ СО2 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный СО2 направляют в конденсатор воздушного охлаждения, где в процессе охлаждения газообразного СО2 ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ направляют в насос и цикл повторяется [7].
На рис. 1, 2 представлены графики расчетных показателей по выработке (потреблению) полезной электрической мощности низкотемпературным тепловым двигателем и абсолютного электрического КПД турбогенератора при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-1200-6,8/50 контуром циркуляции на сжиженном СО2 в зависимости от температуры наружного воздуха.

223.15 228.15 233,15 238.15 243.15 248.15 253.15 258.15 263.15 268.15 273.15
Темпера гура наружного воздуха, К
Рис. 1. Для турбин К-1200-6,8/50 с расходом пара в конденсатор 960 кг/с.

Рис. 2. Для турбин К-1200-6,8/50 с расходом пара в конденсатор 960 кг/с.
Абсолютный электрический КПД (рис. 2) турбогенератора низкотемпературного теплового двигателя варьируется от 4,14% до 5,94%. При этом использование низкотемпературного теплового двигателя с замкнутым контуром циркуляции на СО 2 в составе мощной конденсационной паровой турбины типа К-1200-6,8/50 позволяет дополнительно вырабатывать электроэнергию на АЭС (рис. 1) в диапазоне температур окружающей среды от 263,15 К (-10°С) до 223,15 К (-50°С).
Список литературы Возможности дополнительной выработки электроэнергии в составе конденсационной паровой турбины типа К-1200-6,8/50 с помощью низкотемпературного теплового двигателя на СО2
- Гафуров А.М. Возможности преобразования низкопотенциальной тепловой энергии в работу теплового двигателя. В сборнике: Актуальные проблемы технических наук. Сборник статей международной научно-практической конференции. 2014. С. 18-20.
- Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140405 04.12.2013.
- Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140435 04.12.2013.
- Россия на турборынке: быстро - не всегда хорошо. [Электронный ресурс] / Режим доступа: http://atomicexpert-old.com/content/turborynok.
- Гафуров А.М. Использование сбросной низкопотенциальной теплоты для повышения экономической эффективности ТЭС в зимний период времени. // Энергетика Татарстана. - 2014. - № 3-4 (35-36). - С. 69-76.
- Гафуров А.М. Возможности повышения выработки электроэнергии на Заинской ГРЭС в зимний период времени. Сборник научных трудов по итогам международной научно-практической конференции «Актуальные вопросы технических наук в современных условиях». - 2015. - С. 82-85.
- Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС в работу низкотемпературного теплового двигателя с замкнутым контуром. // Вестник Казанского государственного энергетического университета. - 2016. - №3 (31). - С. 73-78.