Возможности дополнительной выработки электроэнергии в составе теплофикационной паровой турбины типа ПТ-135/165-130/15 с помощью низкотемпературного теплового двигателя на СО2
Автор: Гафуров А.М., Зайнуллин Р.Р.
Журнал: Форум молодых ученых @forum-nauka
Статья в выпуске: 6 (10), 2017 года.
Бесплатный доступ
Представлены результаты исследования способа работы низкотемпературного теплового двигателя на сжиженном СО2 по выработке электроэнергии в составе теплофикационной паровой турбины типа ПТ-135/165-130/15 при температуре окружающей среды до минус 50°С.
Паровая турбина, низкотемпературный тепловой двигатель, сжиженный углекислый газ
Короткий адрес: https://sciup.org/140279091
IDR: 140279091
Текст научной статьи Возможности дополнительной выработки электроэнергии в составе теплофикационной паровой турбины типа ПТ-135/165-130/15 с помощью низкотемпературного теплового двигателя на СО2
Наибольшее распространение на теплоэлектроцентралях (ТЭЦ) получили теплофикационные паровые турбины типа ПТ-135/165-130/15 ТМЗ (Турбомоторный завод, ныне Уральский турбинный завод) с регулируемыми одним производственным и двумя теплофикационными отборами пара для нужд производства, отопления и горячего водоснабжения. Особенностью теплофикационных паровых турбин является возможность повышения их тепловой экономичности за счет усовершенствования той части тепловой схемы, которая относится к использованию теплоты отработавшего в турбине пара.
В зимний период времени паровые турбины типа ПТ-135/165-130/15 (номинальной мощностью 135 МВт и начальными параметрами пара: давление 12,75 МПа и температура 555°С) работают в теплофикационном режиме, когда часть теплоты отработавшего в турбине пара, имеющая более низкий потенциал, отбирается для централизованного теплоснабжения, а часть пара около 10 кг/с (до 10% от номинала) направляется в конденсатор паровой турбины для осуществления вентиляционного режима работы последней ступени паровой турбины. В конденсаторе паровой турбины типа ПТ-135/165-130/15 поддерживается низкое давление пара равное 7,5 кПа, что соответствует температуре насыщения в 40,29°С. Процесс конденсации 1 кг отработавшего в турбине пара сопровождается высвобождением скрытой теплоты парообразования (ранее затраченная на испарение) равная примерно
2120 кДж/кг, которая отводиться с помощью охлаждающей воды в окружающую среду [1].
Таким образом в зимний период времени конденсаторы паровых турбин типа ПТ-135/165-130/15 являются источниками сбросной низкопотенциальной теплоты с температурой в 40,29°С, а окружающая среда - прямой источник холода с температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью низкотемпературного теплового двигателя с замкнутым контуром циркуляции на низкокипящем рабочем теле [2].
Предлагается использование низкотемпературного теплового двигателя в составе теплофикационной паровой турбины типа ПТ-135/165-130/15, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в холодном источнике (конденсаторе) второму контуру на низкокипящем рабочем теле - углекислом газе СО2. Причем охлаждение низкокипящего рабочего газа СО2 будет осуществляться наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [3].
Замкнутый контур циркуляции низкотемпературного теплового двигателя представляет собой последовательно соединенные насос, теплообменник-испаритель (конденсатор паровой турбины), турбодетандер с электрогенератором и теплообменник-конденсатор аппарата воздушного охлаждения [4, 5].
Способ работы низкотемпературного теплового двигателя на СО2 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (3-10%) при давлении в 7,5 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. Полученный основной конденсат с помощью конденсатного насоса направляют в систему регенерации. В качестве охлаждающей жидкости используется сжиженный углекислый газ СО2, который сжимают в насосе до высокого давления и направляют в конденсатор паровой турбины типа ПТ-135/165-130/15 для охлаждения отработавшего в турбине влажного пара. Конденсация 10 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 21,2 МВт, которая отводится на нагрев и испарение сжиженного газа СО2 до температуры перегретого газа в 35,29°С. На выходе из конденсатора паровой турбины полученный перегретый газ СО2 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный СО2 направляют в теплообменник-конденсатор аппарата воздушного охлаждения, где в процессе охлаждения газообразного СО2 ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ направляют в насос и цикл повторяется [6].
На рис. 1, 2 представлены графики расчетных показателей по выработке (потреблению) полезной электрической мощности низкотемпературным тепловым двигателем и абсолютного электрического КПД турбогенератора при осуществлении процесса охлаждения конденсаторов паровых турбин типа ПТ-135/165-130/15 контуром циркуляции на СО2 в зависимости от температуры наружного воздуха.
Абсолютный электрический КПД (рис. 2) турбогенератора низкотемпературного теплового двигателя варьируется от 5,61% до 7,27%. При этом использование низкотемпературного теплового двигателя с замкнутым контуром циркуляции на СО 2 в составе теплофикационной паровой турбины типа ПТ-135/165-130/15 позволяет дополнительно вырабатывать электроэнергию на ТЭЦ (рис. 1) в диапазоне температур окружающей среды от 268,15 К (-5°С) до 223,15 К (-50°С).

Рис. 1. Для турбин ПТ-135/165-130 с расходом пара в конденсатор 10 кг/с.

Рис. 2. Для турбин ПТ-135/165-130 с расходом пара в конденсатор 10 кг/с.
Также необходимо учитывать, что при традиционном способе охлаждения 1 кг пара в конденсаторе паровой турбины требуется прокачивать около 45-60 кг охлаждающей воды с затратами электрической мощности на циркуляционные насосы в среднем 11-12 кВт. В данном случаи при расходе пара в конденсатор до 10 кг/с затраты электрической мощности на циркуляционные насосы составили бы около 110 кВт. Поэтому использование низкотемпературного теплового двигателя на СО 2 позволяет не только дополнительно вырабатывать электроэнергию на станции, но и существо экономить на собственные нужды.
Список литературы Возможности дополнительной выработки электроэнергии в составе теплофикационной паровой турбины типа ПТ-135/165-130/15 с помощью низкотемпературного теплового двигателя на СО2
- Техническое описание и тепловая схема турбоустановки ПТ-135/165-130. [Электронный ресурс] / Режим доступа: http://energoworld.ru/blog/tehnicheskoe-opisanie-i-teplovaya-shema-turboustanovki-pt-135-165-130/.
- Гафуров А.М. Использование сбросной низкопотенциальной теплоты для повышения экономической эффективности ТЭС в зимний период времени. // Энергетика Татарстана. - 2014. - № 3-4 (35-36). - С. 69-76.
- Гафуров А.М. Возможности повышения выработки электроэнергии на Заинской ГРЭС в зимний период времени. Сборник научных трудов по итогам международной научно-практической конференции «Актуальные вопросы технических наук в современных условиях». - 2015. - С. 82-85.
- Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140405 04.12.2013.
- Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140435 04.12.2013.
- Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС в работу низкотемпературного теплового двигателя с замкнутым контуром. // Вестник Казанского государственного энергетического университета. - 2016. - №3 (31). - С. 73-78.