Возможности использования биологически активных веществ растений в терапии рака лёгкого

Автор: Буслаев В.Ю., Минина В.И., Торгунакова А.В., Соболева О.А., Марущак А.В., Яковлева А.А.

Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet

Рубрика: Пищевая биотехнология

Статья в выпуске: 4 (94), 2022 года.

Бесплатный доступ

В настоящее время отмечается значительный интерес к возможности использования биологически активных веществ для решения задач не только профилактики, но и терапии заболеваний человека. Их богатым источником традиционно считаются лекарственные растения, обладающие высоким фармакологическим потенциалом. Терапевтические свойства биологически активных веществ растений были продемонстрированы на примере многих распространённых заболеваний человека. В данном систематическом обзоре обсуждается перспективность применения экстрактов растений в терапии рака лёгкого. Был осуществлен поиск научных статей с использованием баз данных Medline, Scopus, WoS, Pubmed. Их текст был опубликован в открытом доступе на английском языке. В результате анализа источников литературы был сделан вывод о значимом терапевтическом потенциале экстрактов растений и перспективности разработки новых стратегий лечения рака легкого, включающих биологически активные вещества наряду с классическими подходами (с химиотерапевтическими агентами, таргетными препаратами, облучением).

Еще

Биологически активные вещества, экстракты растений, рак лёгкого, молекулярные механизмы, терапевтические свойства

Короткий адрес: https://sciup.org/140301771

IDR: 140301771   |   DOI: 10.20914/2310-1202-2022-4-115-123

Список литературы Возможности использования биологически активных веществ растений в терапии рака лёгкого

  • Sung H., FerlayJ., Siegel R.L., Laversanne M., Soerjomataram I. Global cancer statistics 2020: GLOBOCAN estimates incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians. 2021.no.3.pp.209-248. https://doi.org/10.3322/caac.21660
  • Pezzani R., Salehi B., Vitalini S., Iriti M. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina. 2019. no. 4.pp.110-126. https://doi.org/10.3390/medicina55040110
  • Chota A., George B.P., Abrahamse H. Potential Treatment of Breast and Lung Cancer Using Dicoma anomala, an African Medicinal Plant. Molecules. 2020.no.19.pp.1-17. https://doi.org/10.3390/molecules25194435
  • Koroth J. et al. Investigation of anti-cancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. BMC Complement Altern Med. 2019. no.1.pp.273-289.
  • de Oliveira M.R., Nabavi S.F., Habtemariam S., Erdogan Orhan I., Daglia M., Nabavi S.M. The effects of baicalein and baicalin on mitochondrial function and dynamics: A review. Pharmacol Res. 2015.pp.296-308.
  • Lian H., Hui Y., Xiaoping T., Wei T., Jiyi X., Xiaolan Y. Baicalein suppresses the proliferation of human cervical cancer cells via Notch 1/Hes signaling pathway. J Cancer Res Ther. 2019..no.6.pp.1216-1220.
  • Kolahdouz Mohammadi R., Arablou T. Resveratrol and endometriosis: In vitro and animal studies and underlying mechanisms (Review). Biomed Pharmacother. 2017.pp.220-228.
  • Teertam S.K., Jha S., Prakash Babu P. Up-regulation of Sirt1/miR149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain. J Clin Neurosci. 2020.pp.402-411.
  • Rodrigues F.C. et al.Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. European Journal of Medicinal Chemistry. 2019. pp. 76-104. https://doi.org/10.1016/j.ejmech.2019.04.058
  • Brüll V. et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. Br J Nutr. 2015.no.8.pp.1263-1277. https://doi.org/10.1017/S0007114515002950
  • Xu Z., Mei J., Tan Y. Baicalin attenuates DDP (cisplatin) resistance in lung cancer by downregulating MARK2 and p-Akt. Int J Oncol. 2017.no.1.pp..93-100. DOIi:10.3892/ijo.2016.3768
  • Yin Z. et al. Baicalin attenuates XRCC1mediated DNA repair to enhance the sensitivity of lung cancer cells to cisplatin. J Recept Signal Transduct Res. 2022.no.3.pp.215-224. https://doi.org/10.1080/10799893.2021.1892132
  • Liu D., He B., Lin L., Malhotra A., Yuan N. Potential of curcumin and resveratrol as biochemical and biophysical modulators during lung cancer in rats. Drug Chem Toxicol. 2019. no.3.pp.:328-334. https://doi.org/10.1080/01480545.2018.1523921
  • Wang J.Y. et al. Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur Rev Med Pharmacol Sci. 2018, no.21.pp.7492-7499. https://doi.org/10.26355/eurrev_201811_16290
  • Li W., Li C., Ma L., Jin F. Resveratrol inhibits viability and induces apoptosis in the smallcell lung cancer H446 cell line via the PI3K/Akt/cMyc pathway. Oncol Rep., 2020. https://doi.org/10.3892/or.2020.7747
  • Chen P. et al. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J Exp Clin Cancer Res. 2019; 38(1):254. https://doi.org/10.1186/s13046-019-1234-8
  • Li X., Ma S., Yang P., et al. Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncol Lett. Published online September 24, 2018. https://doi.org/10.3892/ol.2018.9488
  • Zhang P., Zhang X. Stimulatory effects of curcumin and quercetin on posttranslational modifications of p53 during lung carcinogenesis. Hum Exp Toxicol. 2018.no.6.pp.618-625. DOI; 10.1177/0960327117714037
  • Liu Y., Wu Y.M., Zhang P.Y. Protective effects of curcumin and quercetin during benzo(a)pyrene induced lung carcinogenesis in mice. Eur Rev Med Pharmacol Sci. 2015.no.9.pp.1736-1743
  • Lam T.K., Shao S., Zhao Y., et al. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol Biomarkers Prev. 2012.no.12.pp.2176-2184. https://doi.org/10.1158/1055-9965.EPI12-0745
  • Yang P., Li X., Wen Q., Zhao X. Quercetin attenuates the proliferation of arsenic-related lung cancer cells via a caspase-dependent DNA damage signaling. Mol Carcinog. 2022.no.7.pp.655-663. https://doi.org/10.1002/mc.23408
  • Sui X et al. Baicalin Induces Apoptosis and Suppresses the Cell Cycle Progression of Lung Cancer Cells Through Downregulating Akt/mTOR Signaling Pathway. Front Mol Biosci. 2021; 7:602282. https://doi.org/10.3389/fmolb.2020.602282
  • Rasheduzzaman M., Jeong J.K., Park S.Y. Resveratrol sensitizes lung cancer cell to TRAIL by p53 independent and suppression of Akt/NF-κB signaling. Life Sciences. 2018.no.208.pp.208-220. https://doi.org/10.1016/j.lfs.2018.07.035
  • Jangid A.K. et al. Baicalin encapsulating lipid-surfactant conjugate based nanomicelles: Preparation, characterization and anticancer activity. Chemistry and Physics of Lipids. 2020.pp.104978. https://doi.org/10.1016/j.chemphyslip.2020.104978
  • Annaji M., Poudel I., Boddu S.H.S, Arnold R.D, Tiwari A.K, Babu R.J. Resveratrol loaded nanomedicines for cancer applications. Cancer Reports. 2021.no.3.pp.1-21. https://doi.org/10.1002/cnr2.1353
  • Monteillier A., Voisin A., Furrer P., Allémann E., Cuendet M. Intranasal administration of resveratrol successfully prevents lung cancer in A/J mice. Sci Rep. 2018.no.1.pp.14257. https://doi.org/10.1038/s41598-018-32423-0
  • Wu Q., Ou H., Shang Y., Zhang X., Wu J., Fan F. Nanoscale Formulations: Incorporating Curcumin into Combination Strategies for the Treatment of Lung Cancer. Drug Des Devel Ther. 2021.pp.2695-2709. https://doi.org/10.2147/DDDT.S311107
  • Zhou X., Liu H.Y., Zhao H., Wang T. RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. Onco Targets Ther. 2018.pp.5397-5405. https://doi.org/10.2147/OTT.S169555
  • Mo F., Xiao Y., Zeng H., et al. Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells. Front Cell Dev Biol. 2021.no.588.pp.299. https://doi.org/10.3389/fcell.2020.588299
  • Chen J., Yuan C.B., Yang B., Zhou X. Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer. J Oncol. 2021.pp.4391581. https://doi.org/10.1155/2021/4391581
  • Cao H.J., Zhou W., Xian X.L., et al. A Mixture of Baicalein, Wogonin, and Oroxylin-A Inhibits EMT in the A549 Cell Line via the PI3K/AKT-TWIST1Glycolysis Pathway. Front Pharmacol. 2021.pp.821485. https://doi.org/10.3389/fphar.2021.821485
  • Sanaei M.J., Razi S., Pourbagheri-Sigaroodi A., Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol. 2022.pp.101364. https://doi.org/10.1016/j.tranon.2022.101364
  • Wu G.Q., Chai K.Q., Zhu X.M, et al. Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget. 2016.no.18.pp.26535-26550. https://doi.org/10.18632/oncotarget.8532
  • Cenciarelli C., Marei H.E., Zonfrillo M, et al. The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget. 2017.no.11.pp.17873-17886. https://doi.org/10.18632/oncotarget.15013
  • Mittal S., Sharma A., Balaji S.A., et al. Coordinate Hyperactivation of Notch1 and Ras/MAPK Pathways Correlates with Poor Patient Survival: Novel Therapeutic Strategy for Aggressive Breast Cancers. Molecular Cancer Therapeutics. 2014.no12.pp.3198-3209. https://doi.org/10.1158/1535-7163.MCT14-0280
  • Chang J.H., Lai S.L., Chen W.S., et al. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim Biophys Acta Mol Cell Res. 2017.no.10.pp. 1746-1758. https://doi.org/10.1016/j.bbamcr.2017.06.017
  • Yang X., Han M., Han H. et al. Silencing Snail suppresses tumor cell proliferation and invasion by reversing epithelial-to-mesenchymal transition and arresting G2/M phase in non-small cell lung cancer. International Journal of Oncology. 2017.no.4.pp.1251-1260. https://doi.org/10.3892/ijo.2017.3888
  • Sher Y.P, Liu J.P, Lo C.C, Kuo T.T, Liu S.J. ADAM9 as a target for lung cancer treatment. Annals of Oncology. 2019.no.78. https://doi.org/10.1093/annonc/mdz268.087
Еще
Статья научная