Possibilities of using mathematical models for thermal nondestructive testing of defects in multilayer bimetallic plates
Автор: Kostyleva Liliya Yu., Loginovskiy Oleg V., Retc Evgeniya A., Yachikov Igor M.
Рубрика: Управление в технических системах
Статья в выпуске: 1 т.22, 2022 года.
Бесплатный доступ
There is an actual task of delamination detection in multilayer bimetallic materials. Various methods of nondestructive testing (NDT) are used to solve it, including the method of transient thermal NDT. This method consists in remote registration, visualization and analysis of thermal (temperature) fields, which depend on thermophysical and geometric characteristics, thermal effect capacity and internal structure features of the object. The internal structure defects cause the appearance of abnormal temperature zones on the object surface. Their analysis allows us to judge the presence of changes in the material as a whole or in individual areas. It is possible to understand whether there is a defect under the anomalous site, and what its parameters are, if there is an adequate mathematical model that theoretically describes the dependence of the measuring results on the properties of the object and the selected technological modes. This model is a significant component of thermal NDT systems. For the same object or process, a certain set of mathematical models can be compiled, differing in the number of factors taken into account, the assumptions made, the completeness and accuracy of the description of the state of the object or the conditions of the process. The set of factors is determined by the purpose of the study, and in order to unambiguously determine the model of the thermal state, it is necessary to describe the characteristics of the object (geometric shape and thermophysical characteristics of the material) and the heat exchange process (characteristics of heat sources, initial and boundary conditions). Aim. To analyze the existing mathematical models for the research object - a multilayer bimetallic plate with delaminations between the outer and inner layers, and to identify common approaches to modeling the processes of thermal NDT of multilayer objects. Materials and methods. The structure of the mathematical model of the thermal state of the object is determined. An analytical review of mathematical models of thermal NDT of multilayer objects is performed. Results. The requirements, assumptions and limitations for a mathematical model of thermal NDT of a multilayer bimetallic plate with delamination defects are formulated. Conclusion. On the basis of the considered approaches to the mathematical modeling of the thermal state of multilayer objects with ideal layers contact and delamination defects, the necessary factors for the development of a model for the transient thermal NDT processes of the studied objects are determined.
Bimetal, transient thermal non-destructive testing, mathematical model, defect in the connection between metal layers, defectometry, flaw detection
Короткий адрес: https://sciup.org/147236514
IDR: 147236514 | DOI: 10.14529/ctcr220104