Возможности экономии расхода условного топлива на собственные нужды станции при использовании в системе охлаждения паровых турбин типа К-300-240 контура циркуляции на C3H8
Автор: Гатина Р.З., Гафуров А.М.
Журнал: Форум молодых ученых @forum-nauka
Статья в выпуске: 7 (11), 2017 года.
Бесплатный доступ
Рассматриваются возможности экономии расхода условного топлива на собственные нужды станции при замещении традиционной системы охлаждения конденсаторов паровых турбин типа К-300-240 контуром циркуляции на сжиженном C3H8 в зимний период времени.
Паровая турбина, система охлаждения, сжиженный пропан
Короткий адрес: https://sciup.org/140279235
IDR: 140279235
Текст научной статьи Возможности экономии расхода условного топлива на собственные нужды станции при использовании в системе охлаждения паровых турбин типа К-300-240 контура циркуляции на C3H8
На всех крупных тепловых и атомных электростанциях для привода электрических генераторов применяются конденсационные паровые турбины, основным преимуществом которых является возможность получения в одной установке большой мощности (до 1200 МВт и более). Крупные конденсационные электростанции (типа ГРЭС) сооружаются непосредственно у источников водоснабжения (река, озеро, море), так как для охлаждения отработавшего в турбине пара требуется огромное количество воды. При этом мощности современных энергетических турбоагрегатов постоянно повышаются, и в настоящее время основной прирост мощностей в энергосистемах происходит за счет ввода агрегатов 300, 500, 800 и 1200 МВт.
Экологические требования в последние годы ужесточились настолько, что дальнейший рост мощностей теплоэлектростанций можно осуществлять либо за счет использования воздушных конденсатор, либо ориентируясь на оборотные системы водоснабжения с градирнями и брызгальными бассейнами. Однако при использовании мокрых градирен охлаждение осуществляется в основном за счет испарения воды, что приводит к уносу влаги и накоплению солей в оборотном контуре охлаждения. Воздушные конденсаторы по ряду причин пока не получили широкого распространения, перспективные разработки в этой области будут описаны далее.
Процесс конденсации 1 кг пара сопровождается высвобождением скрытой теплоты парообразования (ранее затраченная на испарение) равная примерно 2200 кДж/кг, которая в настоящее время отводиться с помощью охлаждающей воды в окружающую среду. При этом потери теплоты в конденсаторе паровой турбины могут составлять до половины (45-50%) затрачиваемой теплоты в термодинамическом цикле.
Например, конденсационные паровые турбины типа К-300-240 (номинальной мощностью 300 МВт и начальными параметрами пара: давление 23,5 МПа и температура 540°С) характеризуются тем, что почти весь пар, пройдя через турбину, поступает в конденсатор (расход пара до 159 кг/с). При этом давление пара за последними ступенями турбины перед входом в конденсатор может достигать 3,5 кПа, что соответствует температуре насыщения в 26,67°С [1].
В настоящее время проводятся исследования и разработки новых систем охлаждения, в которых промежуточным теплоносителем вместо воды служит низкокипящее рабочее тело, которое испаряется в поверхностном конденсаторе паровой турбины, расширяется в турбодетандере и конденсируется затем в охладительной башне, где теплота конденсации передается наружному воздуху [2, 3].
Таким образом в зимний период времени конденсаторы паровых турбин типа К-300-240 являются источниками сбросной низкопотенциальной теплоты с температурой в 26,67°С, а окружающая среда – прямой источник холода с допустимой температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью замкнутого контура циркуляции на низкокипящем рабочем теле представляющий собой тепловой двигатель, осуществляющий свою работу по органическому циклу Ренкина.
Поэтому предлагается замещение традиционной системы охлаждения конденсаторов паровых турбин типа К-300-240 контуром циркуляции на сжиженном пропане в виде теплового двигателя, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в конденсаторе паровой турбины второму контуру на низкокипящем рабочем теле – C 3 H 8 . Основным преимуществом использования пропана C 3 H 8 является его температура насыщения равная минус 42°С при давлении 0,1 МПа, что позволяет осуществлять процесс охлаждения и сжижения газообразного C 3 H 8 наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [4].
Способ работы теплового двигателя на C3H8 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (2%-10%) при давлении в 3,5 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. В качестве охлаждающей жидкости используется сжиженный пропан C3H8, который сжимают в насосе до давления 0,9-1,2 МПа и направляют в теплообменник-конденсатор паровой турбины типа К-300-240 для охлаждения отработавшего в турбине влажного пара. Конденсация 159 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 341,85 МВт, которая отводится на нагрев и испарение сжиженного газа C3H8 до температуры перегретого газа в 21,67°С. На выходе из теплообменника-конденсатора паровой турбины полученный перегретый газ C3H8 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный C3H8 направляют в теплообменник-конденсатор аппарата воздушного охлаждения, где в процессе охлаждения газообразного C3H8 ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ направляют в насос и цикл повторяется [5].
На рис. 1, 2 представлены графики расчетных показателей по экономии расхода условного топлива на станции (т.у.т./ч) и эксергетической эффективности теплового двигателя при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-300-240 контуром циркуляции на C 3 H 8 в зависимости от температуры наружного воздуха в зимний период времени.

Рис. 1. Для турбин К-300-240 с расходом пара в конденсатор 159 кг/с.

Рис. 2. Для турбин К-300-240 с расходом пара в конденсатор 159 кг/с.
Эксергетическая эффективность теплового двигателя (рис. 2) варьируется от 9,8% до 13,95%. При этом использование теплового двигателя с замкнутым контуром циркуляции на C3H8 в системе охлаждения паровых турбин типа К-300-240 позволяет экономить (рис. 1) до 2,91 т.у.т./час на собственные нужды станции в температурном диапазоне окружающей среды от 258,15 К (-15°С) до 223,15 К (-50°С).
Список литературы Возможности экономии расхода условного топлива на собственные нужды станции при использовании в системе охлаждения паровых турбин типа К-300-240 контура циркуляции на C3H8
- Клименко А.В., Зорин В.М. Тепловые и атомные электростанции: Справочник. Книга 3. 3-е изд., перераб. и доп. - М.: Издательство МЭИ, 2003. - 648 с.
- Патент на изобретение № 2555600 РФ. Способ работы тепловой электрической станции / Гафуров А.М. 10.07.2015 г.
- Патент на изобретение № 2555597 РФ. Способ работы тепловой электрической станции / Гафуров А.М. 10.07.2015 г.
- Гафуров А.М., Гатина Р.З. Выбор низкокипящего рабочего тела по положению угла наклона кривой линии насыщенного газа. // Форум молодых ученых. - 2017. - №5 (9). - С. 500-503.
- Зайнуллин Р.Р., Гафуров А.М. Осуществление бинарного цикла в составе конденсационной паровой турбины типа К-300-240 ЛМЗ, охлаждаемого водой при температуре 5°С. // Форум молодых ученых. - 2017. - №5 (9). - С. 789-792.