Возможности экономии расхода условного топлива на собственные нужды станции при использовании в системе охлаждения паровых турбин типа К-500-240-2 контура циркуляции на C3H8

Автор: Потапов А.А., Гафуров Н.М.

Журнал: Форум молодых ученых @forum-nauka

Статья в выпуске: 7 (11), 2017 года.

Бесплатный доступ

Рассматриваются возможности экономии расхода условного топлива на собственные нужды станции при замещении традиционной системы охлаждения конденсаторов паровых турбин типа К-500-240-2 контуром циркуляции на сжиженном C3H8 в зимний период времени.

Паровая турбина, система охлаждения, сжиженный пропан

Короткий адрес: https://sciup.org/140279358

IDR: 140279358

Текст научной статьи Возможности экономии расхода условного топлива на собственные нужды станции при использовании в системе охлаждения паровых турбин типа К-500-240-2 контура циркуляции на C3H8

Основная часть электроэнергии в настоящее время производится на тепловых электростанциях (ТЭС). На ТЭС используется только 40% энергии топлива, это означает, что 60% этой энергии теряется безвозвратно в виде тепловых отходов. Это обусловлено использованием водяного пара в качестве рабочего тела в термодинамическом цикле Ренкина, когда в процессе конденсации отработавшего в турбине пара происходит высвобождение скрытой теплоты парообразования равная примерно 2200 кДж/кг с 1 кг пара, которая в настоящее время отводиться с помощью охлаждающей воды в окружающую среду. Таким образом, потери теплоты в конденсаторе паровой турбины могут составлять до половины (45-50%) затрачиваемой теплоты в термодинамическом цикле.

В настоящее время проводятся исследования и разработки, новых энергоэффективных систем охлаждения паровых турбин, в которых промежуточным теплоносителем вместо воды служит низкокипящее рабочее тело, которое испаряется в поверхностном конденсаторе паровой турбины, расширяется в турбодетандере и конденсируется затем в охладительной башне, где теплота конденсации передается наружному воздуху [1, 2].

Например, мощные паровые турбины типа К-500-240-2 (номинальной мощностью 500 МВт и начальными параметрами пара: давление 23,5 МПа и температура 540°С) характеризуются тем, что почти весь пар, пройдя через турбину, поступает в конденсатор с расходом до 255 кг/с. При этом в конденсаторе паровой турбины типа К-500-240-2 поддерживается низкое давление пара равное 3,63 кПа, что соответствует температуре насыщения в 27,29°С. Таким образом в зимний период времени конденсаторы паровых турбин типа К-500-240-2 являются источниками сбросной низкопотенциальной теплоты с температурой в 27,29°С, а окружающая среда – прямой источник холода с допустимой температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью замкнутого контура циркуляции на низкокипящем рабочем теле представляющий собой тепловой двигатель, осуществляющий свою работу по органическому циклу Ренкина [3, 4].

Особенностью конденсационных паровых турбин является возможность повышения их тепловой экономичности за счет усовершенствования той части тепловой схемы, которая относится к использованию теплоты отработавшего в турбине пара. Поэтому предлагается замещение традиционной системы охлаждения конденсаторов паровых турбин типа К-500-240-2 контуром циркуляции на сжиженном пропане в виде теплового двигателя, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в конденсаторе паровой турбины второму контуру на низкокипящем рабочем теле – C 3 H 8 . Основным преимуществом использования пропана C3H8 является его температура насыщения равная минус 42°С при давлении 0,1 МПа, что позволяет осуществлять процесс охлаждения и сжижения газообразного C3H8 наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [5].

Способ работы теплового двигателя на C3H8 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (2%-10%) при давлении в 3,63 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость.

В качестве охлаждающей жидкости используется сжиженный пропан C3H8, который сжимают в насосе до давления 0,9-1,2 МПа и направляют в теплообменник-конденсатор паровой турбины типа К-500-240-2 для охлаждения отработавшего в турбине влажного пара. Конденсация 255 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 550 МВт, которая отводится на нагрев и испарение сжиженного газа C 3 H 8 до температуры перегретого газа в 22,29°С. На выходе из теплообменника-конденсатора паровой турбины полученный перегретый газ C 3 H 8 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный C 3 H 8 направляют в теплообменник-конденсатор аппарата воздушного охлаждения, где в процессе охлаждения газообразного C 3 H 8 ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ направляют в насос и цикл повторяется [6].

Аппараты воздушного охлаждения имеют более длительный срок службы по сравнению с аппаратами водяного охлаждения из-за меньшего загрязнения и коррозии наружной поверхности теплообмена.

На рис. 1, 2 представлены графики расчетных показателей по экономии расхода условного топлива на станции (т.у.т./ч) и эксергетической эффективности теплового двигателя при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-500-240-2 контуром циркуляции на C3H8 в зависимости от температуры наружного воздуха в зимний период времени.

Рис. 1. Для турбин К-500-240-2 с расходом пара в конденсатор 255 кг/с.

Рис. 2. Для турбин К-500-240-2 с расходом пара в конденсатор 255 кг/с.

Эксергетическая эффективность теплового двигателя (рис. 2) варьируется от 9,8% до 13,95%. При этом использование теплового двигателя с замкнутым контуром циркуляции на C3H8 в системе охлаждения паровых турбин типа К-500-240-2 позволяет экономить (рис. 1) до 4,67 т.у.т./час на собственные нужды станции в температурном диапазоне окружающей среды от 258,15 К (-15°С) до 223,15 К (-50°С).

Список литературы Возможности экономии расхода условного топлива на собственные нужды станции при использовании в системе охлаждения паровых турбин типа К-500-240-2 контура циркуляции на C3H8

  • Патент на изобретение № 2560495 РФ. Способ работы тепловой электрической станции / Гафуров А.М., Гафуров Н.М. 20.08.2015 г.
  • Патент на изобретение № 2560496 РФ. Способ работы тепловой электрической станции / Гафуров А.М., Гафуров Н.М. 20.08.2015 г.
  • Клименко А.В., Зорин В.М. Тепловые и атомные электростанции: Справочник. Книга 3. 3-е изд., перераб. и доп. - М.: Издательство МЭИ, 2003. - 648 с.
  • Турбина К-500-240-2. [Электронный ресурс] / Режим доступа: http://www.superheater.ru/index.php?option=com_content&view=article&id=164&Itemid=167.
  • Гафуров А.М., Гафуров Н.М. Перспективы применения бинарных энергоустановок на тепловых электростанциях России. // Форум молодых ученых. - 2017. - №5 (9). - С. 509-512.
  • Зайнуллин Р.Р., Гафуров А.М. Осуществление бинарного цикла в составе конденсационной паровой турбины типа К-500-240-2 ХТЗ, охлаждаемого водой при температуре 5°С. // Форум молодых ученых. - 2017. - №5 (9). - С. 792-795.
Статья научная