Возрастные изменения в мозге и факторы влияющие на них

Автор: Третьякова Вера Дмитриевна

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 7 т.8, 2022 года.

Бесплатный доступ

Начиная с рождения и далее на протяжении всей жизни в мозге происходят изменения, некоторые из которых являются естественным продолжением внутриутробного развития или результатом нейропластических изменений во взрослом возрасте, тогда как другие могут быть следствием нейродегенеративных процессов, вызванных различными факторами, в том числе старением. Хотя старение мозга и возрастное ухудшение когнитивных функций является естественным процессом, однако, существует большая внутрииндивидуальная изменчивость. Важно исследовать факторы, лежащие в основе этих различий, чтобы определить какие меры могут реально замедлить снижение когнитивных функций и возрастные изменения в мозге. Для этой цели первая часть настоящего обзора посвящена рассмотрению возрастных изменений, происходящих в структуре мозге, а также основных теорий когнитивного старения: теория резерва, теория старения лобных долей, теория дефицита тормозных влияний, компенсаторные теории и теория сенсорной депривации. Вторая часть обзора посвящена описанию факторов, которые могут оказывать влияние на здоровье мозга, таких как: образ жизни, физическая активность, питание и другие.

Еще

Мозг, старение, возрастные изменения в мозге, деменция, когнитивные функции, когнитивное здоровье, факторы влияющие на старение

Короткий адрес: https://sciup.org/14124471

IDR: 14124471   |   DOI: 10.33619/2414-2948/80/20

Список литературы Возрастные изменения в мозге и факторы влияющие на них

  • Teissier T., Boulanger E., Deramecourt V. Normal ageing of the brain: Histological and biological aspects // Revue Neurologique (Paris). 2020. V. 176 №9. P. 649-660. https://doi.org/10.1016/j.neurol.2020.03.017
  • Lawton M. P., Moss M., Hoffman C., Grant R., Ten Have T, Kleban M. H. Health, valuation of life, and the wish to live // Gerontologist. 1999. V. 39. №4. P. 406-416. https://doi.org/10.1093/geront/39.4.406.
  • Salthouse T. A. Consequences of age-related cognitive declines // Annual Review of Psychology. 2012. V. 6. P. 201-226. https://doi.org/10.1146/annurev-psych-120710-100328
  • Grady C. L. The cognitive neuroscience of ageing // Nature Reviews Neuroscience. 2012. V. 13. P. 491-505. https://doi.org/10.1038/nrn3256
  • Oschwald J., Guye S., Liem F., Rast P., Willis S., Röcke C., Jäncke L., Martin M., Mérillat S. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change // Reviews in the Neurosciences. 2019. V. 31. №1. P. 1-57. https://doi.org/10.1515/revneuro-2018-0096
  • Dekaban A. S., Sadowsky D. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights // Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1978. V. 4. №4. P. 345-356. https://doi.org/10.1002/ana.410040410
  • Svennerholm L., Boström K., Jungbjer B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes // Acta Neuropathologica. 1997. V. 94. №4. P. 345–352. https://doi.org/10.1007/s004010050717
  • Hedman A. M., van Haren N. E., Schnack H. G., Kahn R. S., Hulshoff Pol H. E. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies // Human Brain Mapping. 2012. V. 33. №8. P. 1987-2002. https://doi.org/10.1002/hbm.21334
  • Pfefferbaum A., Mathalon D. H., Sullivan E. V., Rawles J. M., Zipursky R. B., Lim K.O. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood // Archives of neurology. 1994. V. 51. №9. P. 874-887. https://doi.org/10.1001/archneur.1994.00540210046012
  • Sowell E. R., Thompson P. M., Toga A. W. Mapping changes in the human cortex throughout the span of life // Neuroscientist. 2004. V. 10. №4. P. 372-392. https://doi.org/10.1177/1073858404263960
  • Jernigan T. L., Press G. A., Hesselink J. R. Methods for measuring brain morphologic features on magnetic resonance images. Validation and normal aging // Archives of neurology. 1990. V. 47. №1. P. 27-32. https://doi.org/10.1001/archneur.1990.00530010035015
  • Jernigan T. L., Tallal P. A. Late childhood changes in brain morphology observable with MRI // Developmental Medicine and Child Neurology. 1990. V. 32. №5. P. 379-85. https://doi.org/10.1111/j.1469-8749.1990.tb16956.x
  • Jernigan T. L., Trauner D. A., Hesselink J. R., Tallal P. A. Maturation of human cerebrum observed in vivo during adolescence // Brain. 1991. V. 114. №Pt5. P. 2037-2049. https://doi.org/10.1093/brain/114.5.2037
  • Fjell A. M., Walhovd K. B. Structural brain changes in aging: courses, causes and cognitive consequences // Reviews in the Neurosciences. 2010. V. 21. №3. P. 187-221. https://doi.org/10.1515/revneuro.2010.21.3.187
  • Ritchie S. J., Dickie D. A., Cox S. R., Valdes Hernandez Mdel C., Corley J., Royle N. A., Pattie A., Aribisala B. S., Redmond P., Muñoz Maniega S., Taylor A. M., Sibbett R., Gow A. J., Starr J. M., Bastin M. E., Wardlaw J. M., Deary I. J. Brain volumetric changes and cognitive ageing during the eighth decade of life // Human Brain Mapping. 2015. V. 36. №12. P. 4910-4925. https://doi.org/10.1002/hbm.22959
  • Pannese E. Morphological changes in nerve cells during normal aging // Brain Structure and Function. 2011. V. 216. №2. P. 85-89. https://doi.org/10.1007/s00429-011-0308-y
  • Juraska J. M., Lowry N. C. Neuroanatomical changes associated with cognitive aging // Current Topics in Behavioral Neurosciences. 2012. V. 10. P. 137-162. https://doi.org/10.1007/7854_2011_137
  • Liu H., Wang L., Geng Z., Zhu Q., Song Z., Chang R., Lv H. A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain // Neuropsychiatric Disease and Treatment. 2016. V. 12. P. 453-465. https://doi.org/10.2147/NDT.S90674
  • Barrick T. R., Charlton R. A., Clark C. A., Markus H. S. White matter structural decline in normal ageing: a prospective longitudinal study using tract-based spatial statistics // Neuroimage. 2010. V. 51. №2. P. 565–577. https://doi.org/10.1016/j.neuroimage.2010.02.033
  • Raz N., Lindenberger U., Rodrigue K. M., Kennedy K. M., Head D., Williamson A., Dahle C., Gerstorf D., Acker J.D. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers // Cerebral Cortex. 2005. V. 15. №11. P. 1676-1689. https://doi.org/10.1093/cercor/bhi044
  • Resnick S. M., Pham D. L., Kraut M. A., Zonderman A. B., Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain // Journal of Neuroscience. 2003. V. 23. №8. P. 3295-3301. https://doi.org/10.1523/JNEUROSCI.23-08-03295.2003
  • Bennett I. J., Madden D. J. Disconnected aging: cerebral white matter integrityand agerelated differences in cognition // Neuroscience. 2014. V. 276. P. 187–205. https://doi.org/10.1016/j.neuroscience.2013.11.026
  • Peters A. The Effects of Normal Aging on Myelinated Nerve Fibers in Monkey Central Nervous System // Frontiers in Neuroanatomy. 2009. V. 3. https://doi.org/10.3389/neuro.05.011.2009
  • Tripathi A. New cellular and molecular approaches to ageing brain // Annals of Neurosciences. 2012. V. 19, №4. P. 177–182. https://doi.org/10.5214/ans.0972.7531.190410
  • Conde J. R., Streit W. J. Microglia in the aging brain // Journal of Neuropathology and Experimental Neurology. 2006. V. 65. №3. P. 199–203. https://doi.org/10.1097/01.jnen.0000202887.22082.63
  • Norden D. M., Godbout J. P. Review: microglia of the aged brain: primed to be activated and resistant to regulation // Neuropathology and Applied Neurobiology. 2013. V. 39. №1. P. 19–34. https://doi.org/10.1111/j.1365-2990.2012.01306.x.
  • Colonna M., Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration // Annual Review of Immunology. 2017. V. 35. №26. P. 441–468. https://doi.org/10.1146/annurev-immunol-051116-052358
  • Hao S., Dey A., Yu. X., Stranahan A. M. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity // Brain, Behavior, and Immunity. 2016. V. 51. P. 230–239. https://doi.org/10.1016/j.bbi.2015.08.023
  • Fjell A. M., Westlye L. T., Grydeland H., Amlien I., Espeseth T., Reinvang I., Raz N., Holland D., Dale A. M., Walhovd K. B., Alzheimer Disease Neuroimaging Initiative. Critical ages in the life course of the adult brain: nonlinear subcortical aging // Neurobiology of Aging. 2013. V. 34. №10. P. 2239-2247. https://doi.org/10.1016/j.neurobiolaging.2013.04.006
  • Madsen S. K., Gutman B. A., Joshi S. H., Toga A. W., Jack C. R. Jr, Weiner M. W., Thompson P. M. Mapping Dynamic Changes in Ventricular Volume onto Baseline Cortical Surfaces in Normal Aging, MCI, and Alzheimer's Disease // Multimodal Brain Image Analysis. 2013. V. 2013. №8159. P. 84-94. https://doi.org/10.1007/978-3-319-02126-3_9
  • Brown W. R., Thore C. R. Review: cerebral microvascular pathology in ageing and neurodegeneration // Neuropathology and Applied Neurobiology. 2011. V. 37. №1, P. 56–74. https://doi.org/10.1111/j.1365-2990.2010.01139.x
  • Abernethy W. B., Bell M. A., Morris M., Moody D. M. Microvascular density of the human paraventricular nucleus decreases with aging but not hypertension // Experimental Neurology. 1993. V. 121. №2. P. 270–274. https://doi.org/10.1006/exnr.1993.1095
  • Buée L., Hof P. R., Bouras C., Delacourte A., Perl D. P., Morrison J. H., Fillit H. M. Pathological alterations of the cerebral microvasculature in Alzheimer’s disease and related dementing disorders // Acta Neuropathologica. 1994. V. 87. №5. P. 469–480. https://doi.org/10.1007/bf00294173
  • Pakkenberg B. Gundersen H. J. Neocortical neuron number in humans: effect of sex and age // The Journal of Comparative Neurology. 1997. V. 384. №2. P. 312–320.
  • Mann D. M. A. The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system // Mechanisms of Ageing and Development. 1983. V. 23. №1. P. 73–94. https://doi.org/10.1016/0047-6374(83)90100-8
  • Baptista P., Andrade J. P. Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates // Frontiers in neuroanatomy. 2018. V. 12. https://doi.org/10.3389/fnana.2018.00044
  • Bishop N. A., Lu T., Yankner B. A. Neural mechanisms of ageing and cognitive decline // Nature. 2010. V. 464. №7288. P. 529–535. https://doi.org/10.1038/nature08983
  • Webster M. J., Herman M. M., Kleinman J. E., Shannon Weickert C. BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan // Gene Expression Patterns. 2006. V. 6. №8. P. 941-951. https://doi.org/10.1016/j.modgep.2006.03.009
  • Mattson M. P., Arumugam T. V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States // Cell Metabolism. 2018. V. 27. №6. P. 1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011
  • Green D. R., Galluzzi L., Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging // Science. 2011. V. 333. №6046. P. 1109–1112. https://doi.org/10.1126/science.1201940
  • Correia-Melo C., Marques F.D., Anderson R., Hewitt G., Hewitt R., Cole J., Carroll B. M., Miwa S., Birch J., Merz A., Rushton M. D., Charles M., Jurk D., Tait S. W., Czapiewski R., Greaves L., Nelson G., Bohlooly-Y. M., Rodriguez-Cuenca S., Vidal-Puig A., Mann D., Saretzki G., Quarato G., Green D. R., Adams P. D., von Zglinicki T., Korolchuk V. I., Passos J. F. Mitochondria are required for pro-ageing features of the senescent phenotype // The EMBO Journal. 2016. V. 35. №7. P. 724-742. https://doi.org/10.15252/embj.201592862
  • Nixon R. A. The role of autophagy in neurodegenerative disease // Nature Medicine. 2013. V. 19. №8. P. 983–997. https://doi.org/10.1038/nm.3232
  • Hansen M., Rubinsztein D. C., Walke D. W. Autophagy as a promoter of longevity: insights from model organisms // Nature Reviews Molecular Cell Biology. 2018. V. 19. P. 579–593. https://doi.org/10.1038/s41580-018-0033-y
  • Loeffler D. A. Influence of Normal Aging on Brain Autophagy: A Complex Scenario // Frontiers in Aging Neuroscience. 2019. V. 11. №49. https://doi.org/10.3389/fnagi.2019.00049
  • Grimm A., Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. Journal of Neurochemistry. 2017. V. 143. №4. P. 418-431. https://doi.org/10.1111/jnc.14037
  • Salthouse T. A. Memory aging from 18 to 80 // Alzheimer Disease and Associated Disorders. 2003. V. 17. №3. P. 162-167. https://doi.org/10.1097/00002093-200307000-00008
  • Levine B., Svoboda E., Hay J. F., Winocur G., Moscovitch M. Aging and autobiographical memory: dissociating episodic from semantic retrieval // Psychology and Aging. 2002. V. 17. №4. P. 677-689
  • Stern Y., Zarahn E., Hilton H. J., Flynn J., DeLaPaz R., Rakitin B. Exploring the neural basis of cognitive reserve // Journal of Clinical and Experimental Neuropsychology. 2003. V. 25. №5. P. 691-701. https://doi.org/10.1076/jcen.25.5.691.14573
  • Salthouse T. A. Neuroanatomical substrates of age-related cognitive decline // Psychological Bulletin. 2011. V. 137. №5. P. 753-784. https://doi.org/10.1037/a0023262
  • Van Petten C., Plante E., Davidson P. S., Kuo T. Y., Bajuscak L., Glisky E. L. Memory and executive function in older adults: relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities // Neuropsychologia. 2004. V. 42 №10. P. 1313-1335. https://doi.org/10.1016/j.neuropsychologia.2004.02.009
  • Barulli D., Stern Y. Emerging concepts in cognitive reserve // Trends in Cognitive Sciences. 2013. V. 17. №10. P. 502–509. https://doi.org/10.1016/j.tics.2013.08.012
  • West R. L. An application of prefrontal cortex function theory to cognitive aging // Psychological Bulletin. 1996. V. 120 №2. P. 272-292. https://doi.org/10.1037/0033-2909.120.2.272
  • Raz N., Torres I. J., Spencer W. D., Baertschie J. C., Millman D., Sarpel G. Neuroanatomical correlates of age-sensitive and age-invariant cognitive abilities: an in vivo MRI investigation // Intelligence. 1993. V. 17. P. 407–422. https://doi.org/10.1016/0160-2896(93)90008-S
  • Cabeza R., Daselaar S. M., Dolcos F., Prince S. E., Budde M., Nyberg L. Taskindependent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval // Cerebral Cortex. 2004. V. 14. №4, P. 364–375. https://doi.org/10.1093/cercor/bhg133
  • Hasher L., Zacks R. T. Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation. 1988. V. 22, P. 193–225. https://doi.org/10.1016/S0079-7421(08)60041-9
  • Jonides J., Smith E. E., Marshuetz C., Koeppe R. A., Reuter-Lorenz P. A. Inhibition in verbal working memory revealed by brain activation // Proceedings of the National Academy of Sciences, U.S.A. 1998. V. 95. №14. P. 8410–8413. https://doi.org/10.1073/pnas.95.14.8410
  • Luks T. L., Simpson G. V., Feiwell R. J., Miller W. L. Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set // Neuroimage. 2002 V. 17. №2. P. 792-802
  • Grady C. L, Springer M. V., Hongwanishkul D., McIntosh A. R., Winocur G. Age-related changes in brain activity across the adult lifespan // Journal of Cognitive Neuroscience. 2006. V. 18. №2. P. 227-241. https://doi.org/10.1162/089892906775783705.
  • Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. A default mode of brain function // Proceedings of the National Academy of Sciences, U.S.A. 2001. V. 98. №2. P. 676–682. https://doi.org/10.1073/pnas.98.2.676
  • Lustig C., Snyder A. Z., Bhakta M., O'Brien K. C., McAvoy M., Raichle M. E., Morris J. C., Buckner R. L. Functional deactivations: change with age and dementia of the Alzheimer type // Proceedings of the National Academy of Sciences U.S.A. 2003. V. 100. №24. P. 4504-4509. https://doi.org/10.1073/pnas.2235925100
  • Chee M. W., Choo, W. C. Functional imaging of working memory after 24 hr of total sleep deprivation // Journal of Neuroscience. 2004. V. 24. №19. P. 4560–4567. doi.org/10.1523/JNEUROSCI.0007-04.2004
  • Salthouse T. A. Ferrer-Caja E. What needs to be explained to account for age-related effects on multiple cognitive variables? // Psychology and Aging. 2003. V. 18. №1. P. 91-110. https://doi.org/10.1037/0882-7974.18.1.91
  • Salthouse T. A. The processing-speed theory of adult age differences in cognition // Psychological Review. 1996. V. 103. №3. P. 403–428. https://doi.org/10.1037/0033-295X.103.3.403
  • Stern Y., Moeller J. R., Anderson K. E., Luber B., Zubin N. R., DiMauro A. A., Park A., Campbell C. E., Marder K., Bell K., Van Heertum R., Sackeim H. A. Different brain networks mediate task performance in normal aging and AD: defining compensation // Neurology. 2000. V. 55. №9. P. 1291-7. https://doi.org/10.1212/wnl.55.9.1291
  • Grady C. L. Functional brain imaging and age-related changes in cognition // Biological Psychology. 2000. V. 54. №1-3. P. 259–281. https://doi.org/10.1016/S0301-0511(00)00059-4
  • Pudas S., Josefsson M., Rieckmann A., Nyberg L. Longitudinal Evidence for Increased Functional Response in Frontal Cortex for Older Adults with Hippocampal Atrophy and Memory Decline // Cerebral Cortex. 2018. V. 28. №3. P. 936-948. https://doi.org/10.1093/cercor/bhw418
  • Reuter-Lorenz P. A., Park D. C. How does it STAC up? Revisiting the scaffolding theory of aging and cognition // Neuropsychology Review. 2014. V. 24. №3. P. 355-370. https://doi.org/10.1007/s11065-014-9270-9
  • Lin M. Y., Gutierrez P. R., Stone K. L., Yaffe K., Ensrud K. E., Fink H. A., Sarkisian C. A., Coleman A. L., Mangione C. M., Study of Osteoporotic Fractures Research Group. Vision impairment and combined vision and hearing impairment predict cognitive and functional decline in older women // Journal of the American Geriatrics Society. 2004. V. 52. №12. P. 1996-2002. https://doi.org/10.1111/j.1532-5415.2004.52554.x.
  • Gopinath B., Schneider J., McMahon C. M., Burlutsky G., Leeder S. R., Mitchell P. Dual sensory impairment in older adults increases the risk of mortality: a population-based study // PLoS One. 2013. V. 8. №3. e55054. doi: 10.1371/journal.pone.0055054
  • Lindenberger U. Baltes P. B. Sensory functioning and intelligence in old age: A strong connection // Psychology and Aging. 1994. V. 9. №3. P. 339–355. https://doi.org/10.1037/0882-7974.9.3.339
  • Valentijn S. A., van Boxtel M. P., van Hooren S. A., Bosma H., Beckers H. J., Ponds R. W., Jolles J. Change in sensory functioning predicts change in cognitive functioning: results from a 6-year follow-up in the maastricht aging study // Journal of the American Geriatrics Society. 2005. V. 53. №3. P. 374-80. https://doi.org/10.1111/j.1532-5415.2005.53152.x
  • Kirkwood T. B. A systematic look at an old problem // Nature. 2008. V. 451. №7179. P. 644–647. https://doi.org/10.1038/451644a
  • Sprott R. L. Biomarkers of aging and disease: Introduction and definitions // Experimental Gerontology. 2010. V. 45. №1. P. 2–4. https://doi.org/10.1016/J.EXGER.2009.07.008
  • Franke K., Ziegler G., Klöppel S., Gaser C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters // Neuroimage. 2010. V. 50. №3, P. 883–892. doi.org/10.1016/j.neuroimage.2010.01.005
  • Franke K., Gaser C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? // Frontiers in Neurology. 2019. V. 10 №789. doi.org/10.3389/fneur.2019.00789
  • Pfefferbaum A., Lim K. O., Zipursky R. B., Mathalon D. H., Rosenbloom M. J., Lane B., Ha C. N., Sullivan E. V. Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study // Alcoholism: Clinical and Experimental Research. 1992. V. 16. №6. P. 1078-1089. https://doi.org/10.1111/j.1530-0277.1992.tb00702.x
  • Ning K., Zhao L., Matloff W., Sun F., Toga A. W. Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants // Scientific Reports. 2020. V. 10. №1. https://doi.org/10.1038/s41598-019-56089-4
  • Durazzo T. C., Insel P. S., Weiner M. W., Alzheimer Disease Neuroimaging Initiative Greater regional brain atrophy rate in healthy elderly subjects with a history of cigarette smoking // Alzheimer's and Dementia. 2012. V. 8. №6. P. 513-9. https://doi.org/10.1016/j.jalz.2011.10.006
  • Gold M., Newhouse P. A., Howard D., Kryscio R. J. Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial // Neurology. 2012. V. 78. №23. 1895. https://doi.org/10.1212/WNL.0b013e31825a45ec
  • Almeida O. P., Garrido G. J., Beer C., Lautenschlager N. T., Arnolda L., Lenzo N. P., Campbell A., Flicker L. Coronary heart disease is associated with regional grey matter volume loss: implications for cognitive function and behaviour // Journal of Internal Medicine. 2008. V. 38. №7. P. 599–606. https://doi.org/10.1111/j.1445-5994.2008.01713.x
  • Gu Y., Scarmeas N., Short E. E., Luchsinger J. A., DeCarli C., Stern Y., Manly J. J., Schupf N., Mayeux R., Brickman A. M. Alcohol intake and brain structure in a multiethnic elderly cohort // Clinical Nutrition. 2014. V. 33. №4. P. 662-667. https://doi.org/10.1016/j.clnu.2013.08.004
  • Luders E., Cherbuin N., Gaser C. Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners // Neuroimage. 2016. V. 134. P. 508-513. https://doi.org/10.1016/j.neuroimage.2016.04.007
  • Stillman C. M., Cohen J., Lehman M. E., Erickson K. I. Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis // Frontiers in Human Neuroscience. 2016. V. 10. №626. https://doi.org/10.3389/fnhum.2016.00626
  • Murphy T., Dias G. P., Thuret S. Effects of diet on brain plasticity in animal and human studies: mind the gap // Neural Plasticity. 2014. V. 2014. https://doi.org/10.1155/2014/563160
  • Hillman C. H., Erickson K. I., Kramer A. F. Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience. 2008. V. 9. №1. P. 58-65. https://doi.org/10.1038/nrn2298
  • Ahlskog J. E., Geda Y. E., Graff-Radford N. R., Petersen R. C. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging // Mayo Clinic Proceedings. 2011. V. 86. №9. P. 876–884. https://doi.org/10.4065/mcp.2011.0252
  • Erickson K. I., Leckie R. L., Weinstein A. M. Physical activity, fitness, and gray matter volume // Neurobiology of Aging. 2014. V. 35. Suppl 2S20-8. https://doi.org/10.1016/j.neurobiolaging.2014.03.034
  • Erickson K. I., Raji C. A., Lopez O. L., Becker J. T., Rosano C., Newman A. B., Gach H. M., Thompson P. M., Ho A. J., Kuller L. H. Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study // Neurology. 2010. V. 75. №16. P. 1415-22. https://doi.org/10.1212/WNL.0b013e3181f88359
  • Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., Kim J. S., Heo S., Alves H., White S. M., Wojcicki T. R., Mailey E., Vieira V. J., Martin S. A., Pence B. D., Woods J. A., McAuley E., Kramer A. F. Exercise training increases size of hippocampus and improves memory // Proceedings of the National Academy of Sciences U.S.A. 2011. V. 108. №7. P. 3017-3022. https://doi.org/10.1073/pnas.1015950108
  • Kleemeyer M. M., Kühn S., Prindle J., Bodammer N.C., Brechtel L., Garthe A., Kempermann G., Schaefer S., Lindenberger U. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults // Neuroimage. 2016. V. 131. P. 155-161. https://doi.org/10.1016/j.neuroimage.2015.11.026
  • Tian Q., Glynn N. W., Erickson K. I., Aizenstein H. J., Simonsick E. M., Yaffe K., Harris T. B., Kritchevsky S. B., Boudreau R. M., Newman A. B., Lopez O. L., Saxton J., Rosano C., Health ABC Study. Objective measures of physical activity, white matter integrity and cognitive status in adults over age 80 // Behavioural Brain Research. 2015. V. 284. P. 51-57. https://doi.org/10.1016/j.bbr.2015.01.045
  • Chieffi S., Messina G., Villano I., Messina A., Valenzano A., Moscatelli F., Salerno M., Sullo A., Avola R., Monda V., Cibelli G., Monda M. Neuroprotective effects of physical activity: evidence from human and animal studies // Frontiers in Neurology. 2017. V. 8. №188. https://doi.org/10.3389/fneur.2017.00188
  • Lee J. S., Shin H. Y., Kim H. J., Jang Y. K., Jung N. Y., Lee J., Kim Y. J., Chun P., Yang J. J., Lee J. M., Kang M., Park K. C., Na D. L., Seo S. W. Combined effects of physical exercise and education on age-related cortical thinning in cognitively normal individuals // Scientific Reports. 2016. V. 6. №24284. https://doi.org/10.1038/srep24284
  • González-Palau F., Franco M., Bamidis P., Losada R., Parra E., Papageorgiou S. G., Vivas A. B. The effects of a computer-based cognitive and physical training program in a healthy and mildly cognitive impaired aging sample // Aging and Mental Health. 2014. V. 18. №7. P. 838-846. https://doi.org/10.1080/13607863.2014.899972
  • Voelcker-Rehage C., Niemann C. Structural and functional brain changes related to different types of physical activity across the life span // Neuroscience and Biobehavioral Reviews. 2013. V. 37. №9. P. 2268–2295. https://doi.org/10.1016/j.neubiorev.2013.01.028
  • Kattenstroth J. C., Kalisch T., Holt S., Tegenthoff M., Dinse H. R. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions // Frontiers in Aging Neuroscience. 2013. V. 26. №5. P. 5. https://doi.org/10.3389/fnagi.2013.00005
  • Eggenberger P., Theill N., Holenstein S., Schumacher V., de Bruin E. D. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up // Clinical Interventions in Aging. 2015. V. 28. №10. P. 1711-32. https://doi.org/10.2147/CIA.S91997
  • Colcombe S., Kramer A. F. Fitness Effects on the Cognitive Function of Older Adults // Psychological Science. 2003. V. 14. P. 125–130. https://doi.org/10.1111/1467-9280.t01-1-01430
  • Middleton L. E., Barnes D. E., Lui L. Y., Yaffe K. Physical activity over the life course and its association with cognitive performance and impairment in old age // Journal of the American Geriatrics Society. 2010. V. 58. №7. P. 1322-1326. https://doi.org/10.1111/j.1532-5415.2010.02903.x
  • Belsky D. W., Caspi A., Houts R., Cohen H. J., Corcoran D. L., Danese A., Harrington H., Israel S., Levine M. E., Schaefer J. D., Sugden K., Williams B., Yashin A. I., Poulton R., Moffitt T. E. Quantification of biological aging in young adults // Proceedings of the National Academy of Sciences. 2015. V. 112. E4104–E4110. https://doi.org/10.1073/pnas.1506264112
  • Burdette J. H., Laurienti P. J., Espeland M. A., Morgan A., Telesford Q., Vechlekar C. D., Hayasaka S., Jennings J. M., Katula J. A., Kraft R. A., Rejeski W. J. Using network science to evaluate exercise- associated brain changes in older adults // Frontiers in Aging Neuroscience. 2010. V. 2. №23. https://doi.org/10.3389/fnagi.2010.00023
  • Boraxbekk C.-J.-J., Salami A., Wåhlin A., Nyberg L. Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network—a multimodal approach // NeuroImage. 2016. V. 131. P. 133–141. https://doi.org/10.1016/j.neuroimage.2015.12.010
  • Voss M. W., Weng T. B., Burzynska A. Z., Wong C. N., Cooke G. E., Clark R., Fanning J., Awick E., Gothe N.P., Olson E.A., McAuley E., Kramer A.F. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging // Neuroimage. 2016. V. 131. P. 113-125. https://doi.org/10.1016/j.neuroimage.2015.10.044
  • Warburton D. E., Nicol C. W., Bredin S. S. Health benefits of physical activity: the evidence // CMAJ. 2006. V. 174. №6. P. 801-809. https://doi.org/10.1503/cmaj.051351
  • Kennedy G., Hardman R. J., Macpherson H., Scholey A. B., Pipingas A. How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms // Journal of Alzheimer's Disease. 2017. V. 55. P. 1–18. https://doi.org/10.3233/JAD-160665
  • Leckie R. L., Oberlin L. E., Voss M. W., Prakash R. S., Szabo-Reed A., Chaddock-Heyman L., Phillips S. M., Gothe N. P., Mailey E., Vieira-Potter V. J., Martin S. A., Pence B. D., Lin M., Parasuraman R., Greenwood P. M., Fryxell K. J., Woods J. A., McAuley E., Kramer A. F., Erickson K. I. BDNF mediates improvements in executive function following a 1-year exercise intervention // Frontiers in Human Neuroscience. 2014. V. 8. №985. https://doi.org/10.3389/fnhum.2014.00985
  • Norton S., Matthews F. E., Barnes D. E., Yaffe K., Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data // The Lancet Neurology. 2014. V. 13. P. 788–794. https://doi.org/10.1016/s1474-4422(14)70136-X
  • Attems J., Jellinger K. A. The overlap between vascular disease and Alzheimer’s disease - lessons from pathology // BMC Medicine. 2014. №12. P. 206. https://doi.org/10.1186/s12916-014-0206-2
  • Kao S. C., Cadenas-Sanchez C., Shigeta T. T., Walk A. M., Chang Y. K., Pontifex M. B., Hillman C. H. A systematic review of physical activity and cardiorespiratory fitness on P3b // Psychophysiology. 2020. V. 57. №7. P. e13425. https://doi.org/10.1111/psyp.13425
  • Craft S., Cholerton B., Baker L. D. Insulin and Alzheimer’s disease: Untangling the web // Journal of Alzheimer's Disease. 2013. V. 33. P. S263-S275. https://doi.org/10.3233/JAD-2012-129042
  • Kanaya A. M., Barrett-Connor E., Gildengorin G., Yaffe K. Change in cognitive function by glucose tolerance status in older adults: a 4-year prospective study of the Rancho Bernardo study cohort // Archives of Internal Medicine. 2004. V. 164 №12. P. 1327-1333. https://doi.org/10.1001/archinte.164.12.1327
  • Strachan M. W., Reynolds R. M., Marioni R. E., Price J. F. Cognitive function, dementia and type 2 diabetes mellitus in the elderly // Nature Reviews Endocrinology. 2011. V. 7 №2. P. 108-114. https://doi.org/10.1038/nrendo.2010.228
  • Craft S. Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation // Neurobiology of Aging. 2005. V. 26. P. 65-69. https://doi.org/10.1016/j.neurobiolaging.2005.08.021
  • Correia S. C., Santos R. X., Carvalho C., Cardoso S., Candeias E., Santos M. S., Oliveira C. R., Moreira P. I. Insulin signaling, glucose metabolism and mitochondria: Major players in Alzheimer’s disease and diabetes interrelation // Brain Research. 2012. V. 1441. P. 64-78. https://doi.org/10.1016/j.brainres.2011.12.063
  • Cholerton B., Baker L.D., Craft S. Insulin resistance and pathological brain ageing // Diabetic Medicine. 2011. V. 28. №12. P. 1463-1475. https://doi.org/10.1111/j.1464-5491.2011.03464.x
  • Spellman T., Rigotti M., Ahmari S.E., Fusi S., Gogos J. A., Gordon J.A. Hippocampalprefrontal input supports spatial encoding in working memory // Nature. 2015. V. 522. №7556. P. 309-314. https://doi.org/10.1038/nature14445
  • Vaynman S., Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins // Neurorehabil Neural Repair. 2005. V. 19. №4. P. 283-295. https://doi.org/10.1177/1545968305280753
  • Zoladz J. A., Pilc A., Majerczak J., Grandys M., Zapart-Bukowska J., Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men // Journal of Physiology and Pharmacology. 2008. V. 59. P. 119–132
  • Voss M. W., Nagamatsu L. S., Liu-Ambrose T., Kramer A. F. Exercise, brain, and cognition across the life span // Journal of Applied Physiologyю. 2011. V. 111 №5. P. 1505-1513. https://doi.org/10.1152/japplphysiol.00210.2011
  • Binder D. K., Scharfman H. E. Brain-derived neurotrophic factor // Growth Factors. 2004. V. 22. P. 123–131. https://doi.org/10.1080/08977190410001723308
  • Coelho F. G. D. M., Gobbi S., Andreatto C. A. A., Corazza D. I., Pedroso R. V., Santos-Galduróz R. F. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly // Archives of Gerontology and Geriatrics. 2013. V. 56. P. 10–15. https://doi.org/10.1016/j.archger.2012.06.003
  • Wilson C. J., Finch C. E., Cohen H. J. Cytokines and cognition--the case for a head-totoe inflammatory paradigm // Journal of the American Geriatrics Society. 2002. V. 50 №12. P. 2041-2056. https://doi.org/10.1046/j.1532-5415.2002.50619.x
  • Barrientos R. M., Kitt M. M., Watkins L. R., Maier S. F. Neuroinflammation in the normal aging hippocampus // Neuroscience. 2015. V. 309, P. 84-99. https://doi.org/10.1016/j.neuroscience.2015.03.007
  • Ryan S. M., Nolan Y. M. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? // Neuroscience and Biobehavioral Reviews. 2016. V. 61. P. 121-31. https://doi.org/10.1016/j.neubiorev.2015.12.004
  • Campbell S. J., Hughes P. M., Iredale J. P., Wilcockson D. C., Waters S., Docagne F., Perry V. H., Anthony D. C. CINC-1 is an acute-phase protein induced by focal brain injury causing leukocyte mobilization and liver injury// The FASEB Journal. 2003. V. 17. №9. P. 1168-1170. https://doi.org/10.1096/fj.02-0757fje
  • Barrientos R. M., Thompson V. M., Kitt M. M., Amat J., Hale M. W., Frank M. G., Crysdale N. Y., Stamper C. E., Hennessey P. A., Watkins L. R., Spencer R. L., Lowry C. A., Maier S.F. Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia // Neurobiology of Aging. 2015. V. 36. №3. P. 1483-1495. https://doi.org/10.1016/j.neurobiolaging.2014.12.003
  • Krabbe K. S., Pedersen M., Bruunsgaard H. Inflammatory mediators in the elderly // Experimental Gerontology. 2004. V. 39. №5. P. 687-699. https://doi.org/10.1016/j.exger.2004.01.009
  • Ertek S., Cicero A. Impact of physical activity on inflammation: effects on cardiovascular disease risk and other inflammatory conditions // Archives of Medical Science. 2012. V. 8. №5. P. 794-804. https://doi.org/10.5114/aoms.2012.31614
  • Jae S. Y., Heffernan K. S., Lee M. K., Fernhall B., Park W. H. Relation of cardiorespiratory fitness to inflammatory markers, fibrinolytic factors, and lipoprotein(a) in patients with type 2 diabetes mellitus // American Journal of Cardiology. 2008. V. 102. №6. P. 700-703. https://doi.org/10.1016/j.amjcard.2008.05.012
  • Elosua R., Bartali B., Ordovas J. M., Corsi A. M., Lauretani F., Ferrucci L. Association between physical activity, physical performance, and inflammatory biomarkers in an elderly population: the InCHIANTI study // The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2005. V. 60. №6. P. 760-767. https://doi.org/10.1093/gerona/60.6.760
  • Chepenik L. G., Cornew L. A., Farah M. J. The influence of sad mood on cognition // Emotion. 2007. V. 7. №4. P. 802–811. https://doi.org/10.1037/1528-3542.7.4.802
  • Woon F. L., Sood S., Hedges D. W. Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis // Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2010. V. 34. №7. P. 1181-1188. https://doi.org/10.1016/j.pnpbp.2010.06.016
  • Sandi C. Stress and cognition // Wiley Interdisciplinary Reviews: Cognitive Science. 2013. V. 4. P. 245-261. https://doi.org/10.1002/wcs.1222
  • McEwen B. S., Gianaros P. J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease // Annals of the New York Academy of Sciences. 2010. V. 1186. P. 190-222. https://doi.org/10.1111/j.1749-6632.2009.05331.x
  • Leuner B., Shors T. J. Stress, anxiety, and dendritic spines: what are the connections? // Neuroscience. 2013. V. 251. P. 108-119. https://doi.org/10.1016/j.neuroscience.2012.04.021
  • Potvin O., Hudon C., Dion M., Grenier S., Préville M. Anxiety disorders, depressive episodes and cognitive impairment no dementia in community-dwelling older men and women // International Journal of Geriatric Psychiatry. 2011. V. 26. №10. P. 1080-1088. https://doi.org/10.1002/gps.264
  • Yochim B. P., Mueller A. E., Segal D. L. Late life anxiety is associated with decreased memory and executive functioning in community dwelling older adults // Journal of Anxiety Disorders. 2013. V. 27. №6. P. 567-575. https://doi.org/10.1016/j.janxdis.2012.10.010
  • Wilson R. S., Begeny C. T., Boyle P. A., Schneider J. A., Bennett D. A. Vulnerability to stress, anxiety, and development of dementia in old age // The American Journal of Geriatric Psychiatry. 2011. V. 19. №4. P. 327-34. https://doi.org/10.1097/JGP.0b013e31820119da
  • Greenwood B. N., Loughridge A. B., Sadaoui N., Christianson J. P., Fleshner M. The protective effects of voluntary exercise against the behavioral consequences of uncontrollable stress persist despite an increase in anxiety following forced cessation of exercise // Behavioural Brain Research. 2012. V. 233. №2. P. 314-321. https://doi.org/10.1016/j.bbr.2012.05.017
  • Wipfli B. M., Rethorst C. D., Landers D. M. The anxiolytic effects of exercise: a metaanalysis of randomized trials and dose–response analysis // Journal of Sport and Exercise Psychology. 2008. V. 30. №4. P. 392-410. https://doi.org/10.1123/jsep.30.4.392
  • Choi K. W., Chen C. Y., Stein M. B., Klimentidis Y. C., Wang M. J., Koenen K. C., Smoller J. W. Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Assessment of bidirectional relationships between physical activity and depression among adults: a 2-sample mendelian randomization study // JAMA Psychiatry. 2019. V. 76. №4. P. 399–408. https://doi.org/10.1001/jamapsychiatry.2018.4175
  • Martins R. A., Coelho E., Silva M. J., Pindus D. M., Cumming S. P., Teixeira A. M., Veríssimo M. T. Effects of strength and aerobic-based training on functional fitness, mood and the relationship between fatness and mood in older adults // The Journal of Sports Medicine and Physical Fitness. 2011. V. 51. №3. P. 489–496
  • Zhang F. F., Peng W., Sweeney J. A., Jia Z. Y., Gong Q. Y. Brain structure alterations in depression: Psychoradiological evidence // CNS Neuroscience and Therapeutics. 2018. V. 24. №11. P. 994-1003. https://doi.org/10.1111/cns.12835
  • Gujral S., Aizenstein H., Reynolds C. F., Butters M. A., Erickson K. I. Exercise effects on depression: Possible neural mechanisms // General Hospital Psychiatry. 2017. V. 49. P. 2-10. https://doi.org/10.1016/j.genhosppsych.2017.04.012
  • Brown R. P., Gerbarg P. L. Yoga breathing, meditation, and longevity // Annals of the New York Academy of Sciences. 2009. V. 1172. P. 54-62. https://doi.org/10.1111/j.1749-6632.2009.04394.x
  • Gothe N. P., Khan I., Hayes J., Erlenbach E., Damoiseaux J. S. Yoga Effects on Brain Health: A Systematic Review of the Current Literature // Brain Plasticity. 2019. V. 5. №1. P. 105-122. https://doi.org/10.3233/BPL-190084
  • Bussing A., Michalsen A., Khalsa S. B. S., Telles S., Sherman K. J. Effects of yoga on mental and physical health: a short summary of reviews // Evidence-Based Complementary and Alternative Medicine. 2012. 2012:165410. https://doi.org/10.1155/2012/165410
  • Shohani M., Badfar G., Nasirkandy M. P., Kaikhavani S., Rahmati S., Modmeli Y., Soleymani A., Azami M. The Effect of Yoga on Stress, Anxiety, and Depression in Women // International Journal of Preventive Medicine. 2018. V. 9. №21. https://doi.org/10.4103/ijpvm.IJPVM_242_16
  • Gothe N. P., McAuley E. Yoga and Cognition: A Meta-Analysis of Chronic and Acute Effects // Psychosomatic Medicine. 2015. V. 77. №7. P. 784-797. https://doi.org/10.1097/PSY.0000000000000218
  • Jacka F. N., Cherbuin N., Anstey K. J., Sachdev P., Butterworth P. Western diet is associated with a smaller hippocampus: a longitudinal investigation // BMC Medicine. 2015. V. 13. №215. https://doi.org/10.1186/s12916-015-0461-x
  • Gómez-Pinilla F. Brain foods: The effects of nutrients on brain function // Nature Reviews Neuroscience. 2008. V. 9. P. 568-578. https://doi.org/10.1038/nrn2421
  • Spencer S. J., Korosi A., Layé S., Shukitt-Hale B., Barrientos R. M. Food for thought: how nutrition impacts cognition and emotion // NPJ Science of Food. 2017. V. 1 №7. https://doi.org/10.1038/s41538-017-0008-y
  • Lourida I., Soni M., Thompson-Coon J., Purandare N., Lang I. A., Ukoumunne O. C., Llewellyn D. J. Mediterranean diet, cognitive function, and dementia: a systematic review // Epidemiology. 2013. V. 24. №4. P. 479-89. https://doi.org/10.1097/EDE.0b013e3182944410
  • Wald D. S., Kasturiratne A., Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials // The American Journal of Medicine. V. 123. №6. P. 522-527.e2. https://doi.org/10.1016/j.amjmed.2010.01.017
  • Boudreault C., Bazinet R. P., Ma D. W. Experimental models and mechanisms underlying the protective effects of n-3 polyunsatu-rated fatty acids in Alzheimer's disease // The Journal of Nutritional Biochemistry. 2009. V. 20. №1. P. 1-10. https://doi.org/10.1016/j.jnutbio.2008.05.016
  • Giudetti A. M., Salzet M., Cassano T. Oxidative Stress in Aging Brain: Nutritional and Pharmacological Interventions for Neurodegenerative Disorders // Oxidative Medicine and Cellular Longevity. 2018. V. 2018. Article ID 3416028. https://doi.org/10.1155/2018/3416028
  • Christen Y. Ginkgo biloba and neurodegenerative disorders // Frontiers in Bioscience. 2004 V. 9. P. 3091-3104. https://doi.org/10.2741/1462
  • Psaltopoulou T., Sergentanis T. N., Panagiotakos D. B., Sergentanis I. N., Kosti R., Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis // Annals of Neurology. 2013. V. 74. №4. P. 580-591. https://doi.org/10.1002/ana.23944
  • Staubo S. C., Aakre J. A., Vemuri P., Syrjanen J. A., Mielke M. M., Geda Y. E., Kremers W. K., Machulda M. M., Knopman D. S., Petersen R. C., Jack C. R. Jr, Roberts R. O. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness // Alzheimer's and Dementia. 2017. V. 13. №2. P. 168-177. https://doi.org/10.1016/j.jalz.2016.06.2359
  • Rhee S. H., Pothoulakis C., Mayer E. A. Principles and clinical implications of the braingut-enteric microbiota axis // Nature Reviews Gastroenterology and Hepatology. 2009. V. 6. №5. P. 306-314. https://doi.org/10.1038/nrgastro.2009.35
  • Baj A., Moro E., Bistoletti M., Orlandi V., Crema F., Giaroni C. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis // International Journal of Molecular Sciences. 2019. V.20. №6. P. 1482. doi: 10.3390/ijms20061482
  • Borgo F., Riva A., Benetti A., Casiragh, M. C., Bertelli S., Garbossa S., Anselmett, S., Scarone S., Pontiroli A. E., Morace G., Borghi E. Microbiota in anorexia nervosa: the triangle between bacterial species, metabolites and psychological tests // PLoS One. 2017. V. 12. №6. P. e0179739. https://doi.org/10.1371/journal.pone.0179739
  • Dinan T. G., Cryan J. F. Brain-gut-microbiota axis and mental health // Psychosomatic Medicine. 2017. V. 79. №8. P. 920–926. https://doi.org/10.1097/PSY.0000000000000519
  • Bonaz B., Bazin T., Pellissier S. The vagus nerve at the interface of the microbiotagutbrain axis // Frontiers in Neuroscience. 2018. V. 12. №49. https://doi.org/10.3389/fnins.2018.00049
  • Mayer E. A., Knight R., Mazmanian S. K., Cryan J. F., Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience // Journal of Neuroscience. 2014. V. 34. №46. P. 15490- 15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014
  • Dash S., Clarke G., Berk M., Jacka F. N. The gut microbiome and diet in psychiatry: focus on depression // Current Opinion in Psychiatry. 2015. V. 28 №1. P. 1-6. https://doi.org/10.1097/YCO.0000000000000117
  • Dickerson F., Severance E., Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder // Brain, Behavior, and Immunity. 2017. V. 62. P. 46-52. https://doi.org/10.1016/j.bbi.2016.12.010
  • Witte A. V., Fobker M., Gellner R., Knecht S., Flöel A. Caloric restriction improves memory in elderly humans // Proceedings of the National Academy of Sciences U.S.A. 2009. V. 106 №4. P. 1255-1260. https://doi.org/10.1073/pnas.0808587106
  • Singh R., Lakhanpal D., Kumar S., Sharma S., Kataria H., Kaur M., Kaur G. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats // Age (Dordrecht, Netherlands). 2012. V. 34. №4. P. 917-933. https://doi.org/10.1007/s11357-011-9289-2
Еще
Статья обзорная