The choice of algorithm parameters in image recognition on the basis of ensemble classifiers and the maximum posterior probability principle
Автор: Savchenko Andrey Vladimirovich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений: Восстановление изображений, выявление признаков, распознавание образов
Статья в выпуске: 1 т.36, 2012 года.
Бесплатный доступ
The problem of the choice of algorithms parameters in automatic image recognition is put and solved by ensemble classifiers construction using the maximum posterior probability principle. The new criterion of parameters choice is strictly synthesized for Kullback-Leibler information discrimination and modern SIFT (Scale-Invariant Feature Transform) method of object recognition. The program and results of experimental research in a problem of face recognition with widely used databases (Yale, AT&T) are presented. It is shown that the proposed criterion allows to achieve recognition accuracy equal to the algorithm with the best parameters set, and not only for Kullback-Leibler information discrimination, but also for other popular distances (Euclidean metric, Kullback information divergence).
Automatic image recognition, ensemble classifiers, kullback-leibler minimum discrimination information principle, maximum posterior probability principle
Короткий адрес: https://sciup.org/14059053
IDR: 14059053