Выбор состава армированных грунтов
Автор: Слободчикова Н.А., Башкарев А.Я.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 1 (110), 2024 года.
Бесплатный доступ
Объектом исследования являются армированные грунты, являющиеся эффективными материалами для строительства автомобильных дорог. Для эффективного практического применения армированных грунтов необходимо правильно подобрать оптимальный состав армированных грунтов в лабораторных условиях. Качественные характеристики определяются на образцах армированных грунтов после их твердения в нормальных условиях в проектном возрасте 28, 56, 90 и более суток. Большая продолжительность работ по подбору состава затрудняет применение этих материалов, особенно в условиях континентального и полярного климата, когда продолжительность строительного сезона невелика.
Армированный грунт, подбор состава, микроволновое излучение, дорожное строительство, золошлаковые материалы
Короткий адрес: https://sciup.org/143182730
IDR: 143182730 | DOI: 10.4123/CUBS.110.6
Список литературы Выбор состава армированных грунтов
- Rios, S., Ramos, C., Fonseca, A.V., Cruz, N., Rodrigues, C. (2016) Colombian Soil Stabilized with Geopolymers for Low Cost Roads. Procedia Engineering, 143, 1392-1400. https://doi.org/10.1016/j.proeng.2016.06.164.
- Bakaiyang, L., Madjadoumbaye, J., Boussafir, Y., Szymkiewicz, F., Duc, M. (2021) Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes. Case Studies in Construction Materials, 15. https://doi.org/10.1016/j.cscm.2021.e00626.
- Rasul, J.M., Burrow, M.P.N., Ghataora, G.S. (2016) Consideration of the deterioration of stabilised subgrade soils in analytical road pavement design. Transportation Geotechnics, 9, 96-109. https://doi.org/10.1016/j.trgeo.2016.08.002.
- Alhaji, M.M., Muazu, M.A, Alhassan, M., Umar, K.G, Ayinla, A.A. (2023) Optimal density for effective chemical stabilization of deficient soils for road structures. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.07.230.
- Kumar, S., Singh, S.K. (2023) Subgrade soil stabilization using geosynthetics: A critical review, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.04.266.
- Naik, R., Kumar, S., Saha, G. (2024) Novel framework for assessing economic viability and environmental impacts: Use of waste products in soil stabilization. Construction and Building Materials, 411, https://doi.org/10.1016/j.conbuildmat.2023.134329.
- Renjith, R., Robert, D., Setunge, S., Costa, S., Mohajerani, A. (2021) Optimization of fly ash based soil stabilization using secondary admixtures for sustainable road construction. Journal of Cleaner Production, 294. https://doi.org/10.1016/j.jclepro.2021.126264.
- Rabab'ah, S.R., Sharo, A.A., Alqudah, M.M., Ashteyat, A.M., Saleh, H.O. (2023) Effect of using Oil Shale Ash on geotechnical properties of cement-stabilized expansive soil for pavement applications. Case Studies in Construction Materials, 19, https://doi.org/10.1016/j.cscm.2023.e02508.
- Díaz-López, J.L., Cabrera, M., Agrela, F., Rosales, J. (2023) Geotechnical and engineering properties of expansive clayey soil stabilized with biomass ash and nanomaterials for its application in structural road layers. Geomechanics for Energy and the Environment, 36, https://doi.org/10.1016/j.gete.2023.100496.
- Turkane, S.D., Chouksey, S.K. (2022) Design of low volume road pavement of stabilized low plastic soil using fly ash geopolymer. Materials Today: Proceedings, 65, Part 2, 1154-1160. https://doi.org/10.1016/j.matpr.2022.04.167.
- Yadav, A.K., Gaurav, K., Kishor, R., Suman, S.K. (2017) Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. International Journal of Pavement Research and Technology, 10, 254-261. https://doi.org/10.1016/j.ijprt.2017.02.001.
- Rahmat, M.N., Kinuthia, J.M. (2011) Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction. Engineering Geology, 117, 170-179. https://doi.org/10.1016/j.enggeo.2010.10.015.
- Dhawale, A.W., Banne, S.P. (2023) Laterite soil stabilization using cellulose biopolymer. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.07.062.
- Sengul, T., Akray, N., Vitosoglu, Y. (2023) Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils. Construction and Building Materials, 400, https://doi.org/10.1016/j.conbuildmat.2023.132590.
- Alzhanova, G.Z.; Aibuldinov, Y.K.; Iskakova, Z.B.; Khabidolda, S.M.; Abdiyussupov, G.G.; Omirzak, M.T.; Murali, G.; Vatin, N.I. (2022) Development of Environmentally Clean Construction Materials Using Industrial Waste. Materials, 15, 5726. https://doi.org/10.3390/ma15165726
- Bashkarev, A., Novik, A., Ismailov, A. (2023) A model for assessing the quality of the granulometric composition of an asphalt concrete mixture. Technical and technological problems of the service, 2, 34-42. https://sciup.org/148326486
- Novik, A., Ismailov, A., Sentsov, I. (2022) Study of physical and mechanical properties of asphalt concrete with the addition of artificial asphaltite. IOP Conference Series: Proceedings of STCCE. International Scientific Conference on Socio-Technical Construction and Civil Engineering 2022: Lecture Notes in Civil Engineering. Switzerland, 15-30. https://doi.org/10.1007/978-3-031-14623-7_2
- Celauro, B., Bevilacqua, A., Bosco, D.L., Celauro, C. (2012) Design Procedures for Soil-Lime Stabilization for Road and Railway Embankments. Part 1-Review of Design Methods. Procedia - Social and Behavioral Sciences, 53, 754-763. https://doi.org/10.1016/j.sbspro.2012.09.925.
- Vamsi Krishna S.H., Sai Santosh B., Sai Prasanth B.H.S. (2023) Prediction of UCS and CBR of a stabilized Black-cotton soil using artificial intelligence approach: ANN. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.05.097.
- Kozubal, J.V., Kania, T., Tarawneh, A.S., Hassanat, A., Lawal, R. (2023) Ultrasonic assessment of cement-stabilized soils: Deep learning experimental results. Measurement, 223, https://doi.org/10.1016/j.measurement.2023.113793.
- Hasanzadeh, A.; Vatin, N.I.; Hematibahar, M.; Kharun, M.; Shooshpasha, I. (2022) Prediction of the Mechanical Properties of Basalt Fiber Reinforced High-Performance Concrete Using Machine Learning Techniques. Materials, 15. https://doi.org/10.3390/ma15207165
- Besche, E., Sambol, M., Rice, E.K., Mackenzie, J.D. (2004) Determination of water-to-cement ratio in freshly mixed rapid-setting calcium sulfoaluminate concrete using 2.45 GHz microwave radiation. Cement and Concrete Research, 34, 807-812. https://doi.org/10.1016/j.cemconres.2003.09.023.
- Leung, C.K.Y., Pheeraphan, T. (1997) Freeze-thaw durability of microwave cured air-entrained concrete. Cement and Concrete Research, 27, 427-435. https://doi.org/10.1016/S0008-8846(97)00014-8.
- Mangat, P.S., Grigoriadis, K., Abubakri, S. (2016) Microwave curing parameters of in-situ concrete repairs. Construction and Building Materials, 112, 856-866. https://doi.org/10.1016/j.conbuildmat.2016.03.007.
- Makul, N. (2016) Innovative hybrid curing method for accelerating the strength of high-performance cement paste using microwave heating coupling with low-pressure processing. Construction and Building Materials, 105, 245-252. https://doi.org/10.1016/j.conbuildmat.2015.12.084.
- Zheng, Y., Su, Z., Fu, H., Zhang, Q., Li, J. (2024) Thermal behaviors of cement and mortar under microwave treatment and the influencing factors: An experimental study. Construction and Building Materials, https://doi.org/10.1016/j.conbuildmat.2023.134191.
- Gao, Z., He, Y., Li, M., Jiang, M., Shen, J. (2022) Impacts of microwave on hydration evolution of Portland cement in the perspective of composition and microstructure of hydrates. Construction and Building Materials. 360. https://doi.org/10.1016/j.conbuildmat.2022.129569.
- Kong, Y., Liu, S., Wang, P. (2021) Effects of microwave curing on the compressive strength development and hydration of cement-granulated blast furnace slag composite system. Construction and Building Materials. 270. https://doi.org/10.1016/j.conbuildmat.2020.121432.
- Leung, C.K.Y., Pheeraphan, T. (1995) Very high early strength of microwave cured concrete. Cement and Concrete Research. 25, 136-146. https://doi.org/10.1016/0008-8846(94)00121-E.
- Makul, N., Rattanadecho, P., Agrawal, D.K. (2010) Microwave curing at an operating frequency of 2.45GHz of Portland cement paste at early-stage using a multi-mode cavity: Experimental and numerical analysis on heat transfer characteristics. International Communications in Heat and Mass Transfer, 37, 1487-1495. https://doi.org/10.1016/j.icheatmasstransfer.2010.09.001.
- Novik, A., Ismailov, A.,Rusakov, M. (2022) The influence of the granulometric composition of asphalt concrete mixtures on the quality of the road surface. Travel Navigator, 51 (77). 36-41. https://www.elibrary.ru/contents.asp?id=48698580.
- Ogurtsov, G., Averchenko, G., Alekseev, S. (2022) Concrete Beams with External Reinforcement of Composite Materials. Proceedings of STCCE: International Scientific Conference on Socio-Technical Construction and Civil Engineering 2022: Lecture Notes in Civil Engineering, Kazan, 291. https://doi.org/10.1007/978-3-031-14623-7_31.
- GOST 25100-2020 Soils. Classification https://docs.cntd.ru/document/1200174302