Высокопрочные мелкозернистые бетоны на основе природного и техногенного сырья

Автор: Балыков А.С., Володин В.В., Каштанов А.А., Каштанова Е.А., Коровкин Д.И., Низина Т.А.

Журнал: Огарёв-online @ogarev-online

Статья в выпуске: 11 т.5, 2017 года.

Бесплатный доступ

В статье показана возможность применения природных и техногенных песков в рецептуре модифицированных мелкозернистых бетонов повышенной прочности. Разработаны составы высокопрочных мелкозернистых бетонов классов В60-В90, включающие строго подобранные компоненты бетонной смеси, в числе которых вяжущие, заполнители, а также целевые высококачественные добавки.

Высокопрочный мелкозернистый бетон, техногенный и природный заполнитель, физико-механические характеристики

Короткий адрес: https://sciup.org/147249348

IDR: 147249348

Текст научной статьи Высокопрочные мелкозернистые бетоны на основе природного и техногенного сырья

Современные высококачественные цементные композиты характеризуются улучшенной технологичностью и удобоукладываемостью, высокой прочностью при сжатии, стабильностью объема и долговечностью [1–3].

Одним из приоритетных направлений мирового бетоноведения является использование высокопрочных и ультравысокопрочных цементных бетонов, так называемых High-Strength Concretes (HSC) и Ultra High-Strength Concretes (UHSC). За последние 25 лет созданы бетоны нового поколения с прочностью при сжатии 150-200 МПа и более, которые возможно производить на современных бетонных заводах в промышленных масштабах [4]. Применение композитов такой прочности позволяет значительно уменьшить геометрические размеры сечений сжатых и изгибаемых элементов несущих конструкций, существенно снижая при этом их объем и массу и, как следствие, расход бетона и стальной арматуры [5].

Однако на данный момент не существует четкой классификации такого рода бетонов. Согласно российским нормативным документам, в частности новому ГОСТ 31914-2015, к высокопрочным бетонам могут быть отнесены тяжелые и мелкозернистые цементные композиты класса по прочности при сжатии В60 и выше.

Многими авторами, в частности [1; 2; 4–12], отмечается тенденция к расширению применения мелкозернистого бетона в строительных конструкциях. Этот вид бетона имеет целый ряд заметных преимуществ, среди которых: высококачественная структура и высокая технологичность при правильно подобранной рецептуре; простота изготовления изделий как методом прессования, так и методом литья; возможность широкого применения сухих смесей с гарантией высокого качества и эффективного модифицирования композитов широким спектром органоминеральных добавок, обеспечивающих получение материалов с различными комплексами свойств [13; 14]; снижение стоимости бетона (до 15–25%) за счет использования дешевых местных песков по сравнению с бетоном на крупном заполнителе; возможность получения тонкостенных и слоистых конструкций, декоративных бетонов и фибробетонов, а также материалов и изделий переменной плотности, в частности фильтрующих, и целый ряд других достоинств.

Помимо природных местных песков, нужно отметить важность использования и техногенных заполнителей в рецептуре мелкозернистых бетонов. Актуальность и перспективность данного направления в бетоноведении обусловлены необходимостью и возможностью расширения сырьевой базы перспективного вида бетона при возрастающем дефиците природного заполнителя и накоплении многотоннажных зернистых промышленных отходов, например, при литейном производстве. Высокая степень использования песков-отходов способствует экономии энерго-сырьевых ресурсов, развитию экономических и технологических решений по их утилизации, а тем самым и улучшению экологической обстановки в регионах.

Необходимо отметить, что в большинстве литературных источников по созданию высокопрочных бетонов указывается на необходимость обеспечения активности цемента на уровне 45-50 МПа и выше (в основном бездобавочного или с минимальным содержанием добавок ЦЕМ I) для изготовления бетонов прочностью на сжатие 120-150 МПа и более [1]. Однако данных о применении низкомарочных и рядовых портландцементов марок М300 и М400 с активностью 25-40 МПа в рецептуре получения бетонов повышенной прочности резко ограничено. На наш взгляд, необходимо использовать возможность получения составов бетонов повышенной прочности с применением всей номенклатуры выпускаемых промышленностью портландцементов, позволяющую сделать оптимальный выбор активности цемента для высококачественных бетонов нового поколения различной прочности в зависимости от требуемых условий (характера работы материала, оптимального расхода вяжущего, требований по экзотермии, воздействий на изделие внешней среды и др.) по аналогии со СНиП 82-02-95, применяемого для рядовых бетонов.

В данном экспериментальном исследовании оценивалась возможность получения высокопрочных мелкозернистых бетонов с применением рядовых портландцементов, природных песков Республики Мордовия и других регионов, а также песков-отходов литейного производства предприятия ООО «ВКМ Сталь» Республики Мордовия.

Мелкие заполнители, используемые в экспериментальном исследовании: П1 – формовочный песок-отход литейного производства ООО «ВКМ Сталь» фракции 0,3 мм (природное месторождение – карьер Ульяновской области ООО «Ташлинский ГОК»); П2 – чистый формовочный песок фракции 0,1 мм (Бурцевское месторождение Нижегородской области) и его обожженный отход (П3), образующийся при применении данного песка на производстве ООО «ВКМ Сталь»; П4 и П5 – природные кварцевые пески Новостепановского карьера (Республика Мордовия, Ичалковский район, п. Смольный) фракций 0,16-0,63 мм и 0,63-5 мм соответственно.

В качестве вяжущего применялся портландцемент ЦЕМ I 32,5Б (Ц1) производства ПАО «Мордовцемент» и портландцемент ЦЕМ I 42,5Б (Ц2) производства ПАО «Сенгилеевский цементный завод» (Ульяновская область). Для увеличения доли тонкодисперсных компонентов вяжущего в состав бетонной смеси вводился микрокальцит КМ-100 (МКМ) в количестве 45–75% от массы портландцемента.

В качестве активных минеральных добавок использовались микрокремнезем конденсированный неуплотненный МК-85 (МК) и уплотненный (МКУ), а также высокоактивный метакаолин белый (ВМК).

Для обеспечения водоредуцирующего и пластифицирующего эффектов применялся высококачественный суперпластификатор Melflux двух модификаций – 1641 F (MF1) и 5581 F (MF2), вводимый в количестве 0,9–1% от массы портландцемента.

Бетонные смеси изготавливались подвижными, большинство составов имели консистенцию от литых до самоуплотнящихся. В ходе эксперимента исследовались следующие характеристики: прочность при сжатии (ГОСТ 310.4) и на растяжение при изгибе (ГОСТ 310.4) в возрасте 28 суток.

Составы мелкозернистых бетонов и результаты их испытаний представлены в таблицах 1 и 2.

Таблица 1

№ состава

Ц1 , кг

Ц2, кг

Содержание модификатора, % от массы портландцемента

Содержание песка, % от массы портландцемента

В/Ц

МК

МКУ

ВМК

П1

П2

П3

П4

П5

1

394

0

0

10

0

0

0

0

144

244

0.58

2

0

722

0

0

10

0

0

0

145

0

0.37

3

722

0

0

0

10

0

0

145

0

0

0.51

4

722

0

0

0

10

0

145

0

0

0

0.47

5

0

722

10

0

0

0

0

0

145

0

0.34

6

722

0

0

0

10

145

0

0

0

0

0.33

7

0

750

0

0

0

145

0

0

0

0

0.29

8

0

500

0

0

10

0

0

0

260

0

0.45

9

0

500

10

0

0

0

0

0

260

0

0.43

Таблица 2

№ состава

Предел прочности на растяжение при изгибе, МПа

Предел прочности при сжатии, МПа

1

5.7

51.2

2

10.5

110.3

3

6.5

56.1

4

9

66.8

5

14.4

104.0

6

11.1

94.9

7

9.2

98.6

8

6.9

82.4

9

8

86.5

Составы высокопрочных мелкозернистых бетонов (содержание цемента в кг на 1 м3 бетонной смеси)

Прочностные свойства композитов в возрасте 28 суток

Наибольшие значения прочностных характеристик в возрасте 28 суток зафиксированы у составов №2 и 5: соответственно 10,5 и 14,4 МПа – на растяжение при изгибе, 110,3 и 104,0 МПа – при сжатии. Данные составы получены на Сенгилеевском портландцементе с применением ВМК, МК и Ичалковского природного кварцевого песка фракцией 0,16-0,63 мм. Из составов на Мордовском портландцементе следует отметить состав с ВМК (№ 6) с прочностными показателями 11,1 и 94,9 МПа на растяжение при изгибе и при сжатии соответственно.

Среди остальных составов стоит выделить состав №1 со средней прочностью при сжатии 51 МПа при расходе портландцемента 394 кг/м3 бетонной смеси, а также составы №8 и 9 со средним расходом вяжущего 500 кг на 1 м3 бетонной смеси, имеющими высокую прочность при сжатии – 82 и 87 МПа соответственно.

Таким образом, в результате экспериментальных исследований были разработаны составы высокопрочных мелкозернистых бетонов классов В60-В90, включающие заполнители как природного, так и техногенного происхождений, а также целевые высококачественные добавки.

Статья научная