Выживаемость эмбрионов и повышение темпов генетического прогресса в молочных стадах (обзор)

Автор: Скачкова О.А., Бригида А.В.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 6 т.56, 2021 года.

Бесплатный доступ

Непрерывность генетического прогресса и применение передовых технологий при разведении высокопродуктивного скота - отличительные черты современного молочного скотоводства (G.R. Wiggans с соавт., 2017; B.V. Sanches с соавт., 2019). На примере коров голштинской породы североамериканской селекции показано, что за 50-летний период (1963-2013 годы), в течение которого надои молока удвоились (с 6619 кг до 12662 кг), генетические изменения составили более 56,0 % (A. Garcia-Ruiz с соавт., 2016). Генетические усовершенствования, направленные на повышение молочной продуктивности, повлекли за собой снижение репродуктивной способности и нарушение здоровья у коров (J. Kropp с соавт., 2014; L. Hyun-Joo с соавт., 2015, B. Fessenden с соавт., 2020), что до сих пор остается глобальной проблемой (E.S. Ribeiro с соавт., 2012; K.J. Perkel с соавт., 2015). В 30-50 % случаев высокоудойные коровы подвержены маститам, метритам, хромоте и другим заболеваниям (I. Cruz с соавт., 2021), а при оплодотворении 90-95 % средний показатель отела составляет около 40-50 % (M.G. Diskin с соавт., 1980; P. Humblot с соавт., 2001). Эмбриональный период у коров продолжается до 42-45-х сут стельности (J. Peippo с соавт., 2011) и характеризуется высокой (до 40 %) эмбриональной смертностью (D.C. Wathes, 1992; K.J. Perkel с соавт., 2015; P. Rani с соавт., 2018), полифакторная этиология которой до сих пор не изучена. Потери генетического потенциала (нерожденные быки-производители, ремонтные телки, матери быков-производителей, доноры эмбрионов) приводят к замедлению селекционного процесса в молочных стадах (M. Ptaszynska, 2009). Настоящий обзор отражает современные данные о генетической предрасположенности эмбриона к выживанию как одному из важных факторов, детерминирующих наступление и развитие стельности у молочных коров. Приведены данные о выживаемости бластоцист в стрессовых условиях их получения in vivo или in vitro, после криоконсервации и оттаивания (J.L.M. Vasconcelos с соавт., 2011; C. Galli, 2017; H. Erdem с соавт., 2020) и бисекции (микрохирургическое деление эмбриона пополам с получением двух деми-эмбрионов) (Y. Hashiyada, 2017). Данные о способности эмбрионов к выживанию с генетической точки зрения становятся все более объективными по мере обнаружения генов-кандидатов, связанных с высокой компетентностью эмбриона к развитию (M.C. Summers и J.D. Biggers, 2003; A. El-Sayed с соавт., 2006). Молекулярно-генетические технологии позволяют исследовать весь набор генов, которые обеспечивают устойчивое развитие бластоцисты (A.M. Zolini с соавт., 2020), а также эпигенетические изменения паттернов экспрессии генов в разные моменты времени до и после имплантации эмбриона (A. Gad с соавт., 2012; P. Humblot, 2018). Это открывает перспективы для разработки методов маркер-ориентированной диагностики нарушений эмбрионального развития, а также методов регуляции экспрессии эмбриональных генов, что внесет вклад в повышение стельности у генетически ценных коров и приведет к увеличению темпов генетического прогресса в популяциях молочного скота.

Еще

Геномная селекция, транскриптомы, высокоудойные коровы, эмбриональная смертность, генетический прогресс, молекулярно-генетические маркеры

Короткий адрес: https://sciup.org/142231910

IDR: 142231910   |   DOI: 10.15389/agrobiology.2021.6.1063rus

Список литературы Выживаемость эмбрионов и повышение темпов генетического прогресса в молочных стадах (обзор)

  • García-Ruiz A., Cole J.B., VanRaden P.M., Wiggans G. R., Ruiz-López F.J., Van Tassell C.P. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proceedings of the National Academy of Sciences, 2016, 113(28): 3995-4004 (doi: 10.1073/pnas.1519061113).
  • Cruz I., Pereira I., Ruprechtera G., Barca J., Meikle A., Larriestra A. Clinical disease incidence during early lactation, risk factors and association with fertility and culling in grazing dairy cows in Uruguay. Preventive Veterinary Medicine, 2021, 191: 105359 (doi: 10.1016/j.prevet-med.2021.105359).
  • Royal M., Mann G.E., Flint A.P. Strategies for reversing the trend towards subfertility in dairy cattle. The Veterinary Journal, 2000, 160(1): 53-60 (doi: 10.1053/tvjl.1999.0450).
  • Lucy M.C. Reproductive loss in high-producing dairy cattle: where will it end? Journal of Dairy Science, 2001, 84(6): 1277-1293 (doi: 10.3168/jds.S0022-0302(01)70158-0).
  • Kropp J., Peñagaricano F., Salih S.M., Khatib H. Invited review: Genetic contributions underly-ing the development of preimplantation bovine embryos. Journal of Dairy Science, 2014, 97(3): 1187-1201 (doi: 10.3168/jds.2013-7244).
  • Hyun-Joo L., Ho-Beak Y., Harim I., Jihoo P., Yong-il C., Yeon-Seop J., Kwang-Seok K., Seok-Ki I. Survey on the incidence of reproductive disorders in dairy cattle. Journal of Embryo Transfer, 2015, 30(1): 59-64 (doi: 10.12750/JET.2015.30.1.59).
  • Fessenden B., Weigel D.J., Osterstock J., Galligan D.T., Di Croce F. Validation of genomic predictions for a lifetime merit selection index for the US dairy industry. Journal of Dairy Science, 2020, 103(11): 10414-10428 (doi: 10.3168/jds.2020-18502).
  • Randel R.D., Welsh T.H. Jr. Joint alpharma-beef species symposium: interactions of feed effi-ciency with beef heifer reproduction development. Journal of Animal Science, 2013, 91(3): 1323-1328 (doi: 10.2527/jas.2012-5679).
  • Ribeiro E.S., Galvão K.N., Thatcher W.W., Santos J.E.P. Economic aspects of applying repro-ductive technologies to dairy herds. Animal Reproduction, 2012, 9(3): 370-387.
  • Perkel K.J., Tscherner A., Merrill C., Lamarre J., Madan P. The ART of selecting the best em-bryo: a review of early embryonic mortality and bovine tmbryo viability assessment methods. Molecular Reproduction Development, 2015, 82(11): 822-838 (doi: 10.1002/mrd.22525).
  • Diskin M.G., Sreenan J.M. Fertilization and embryonic mortality rates in beef heifers after arti-ficial insemination. Journal Reproduction Fertility, 1980, 59: 463-468 (doi: 10.1530/jrf.0.0590463).
  • Humblot P. Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. Theriogenol-ogy, 2001, 56(9): 1417-1433 (doi: 10.1016/s0093-691x(01)00644-6).
  • Wathes D.C. Embryonic mortality and the uterine environment. Journal of Endocrinology, 1992, 134(3): 321-325 (doi: 10.1677/joe.0.1340321).
  • Reese S.T., Pereira M.C., Vasconcelos J.L.M., Smith M.F., Geary T.V., Peres R.F.G., Perry G.A., Pohler K.G. Markers of pregnancy: how early can we detect pregnancies in cattle using pregnancy-associated (PAGs) and microRNAs? Animal Reproduction, 2016, 13(3): 200-208 (doi: 10.21451/1984-3143-AR878).
  • Rani P., Dutt R., Singh G., Chandolia R.R. Embryonic mortality in cattle — a review. Interna-tional Journal of Current Microbiology and Applied Sciences, 2018, 7(7): 1501-1516 (doi: 10.20546/ijcmas.2018.707.177).
  • Peippo J., Machaty Z., Peter A. Terminologies for the pre-attachment bovine embryo. Theri-ogenology, 2011, 76(8): 1373-1379 (doi: 10.1016/j.theriogenology.2011.06.018).
  • Zolini A.M., Block J., Rabaglino M.B., Rincon G., Hoelker M., Bromfield J.J., Salilew-Wondim D., Hansen P.J. Genes associated with survival of female bovine blastocysts produced in vivo. Cell and Tissue Research, 2020, 382: 665-678 (doi: 10.1007/s00441-020-03257-y).
  • Bovine reproduction. In: Compendium of animal reproduction /M. Ptaszynska (ed.). Intervet In-ternational BV, 2009.
  • Khatib H., Huang, W., Wang X., Tran, A H., Bindrim A.B., Schutzkus V., Monson R.L., Yan-dell B.S. Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle. Journal of Dairy Science, 2009, 92(5): 2238-2247 (doi: 10.3168/jds.2008-1767).
  • Santos J.E.P., Thatcher W.W., Chebel R.C., Cerri R.L.A., Galvão K.N. The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Animal Reproduction Science, 2004, 82-83: 513-535 (doi: 10.1016/j.anireprosci.2004.04.015).
  • Watson A.J., Westhusin M.E., Winger Q.A. IGF paracrine and autocrine interactions between conceptus and oviduct. Journal of Reproduction and Fertility, 1999, 54: 303-315.
  • Avilés M., Coy P., Rizos D. The oviduct: a key organ for the success of early reproductive events. Animal Fronttiers, 2015, 5(1): 25-31 (doi: 10.2527/af.2015-0005).
  • Rizos D., Maillo V., Lonergan P. Role of the oviduct and oviduct-derived products in ruminant embryo development. Animal Reproducrion, 2016, 13(3): 160-167 (doi: 10.21451/1984-3143-AR863).
  • Forde N., Spencer T.E., Bazer F.W., Song G., Roche J.F., Lonergan P. Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiological Genomics, 2010, 41(1): 53-62 (doi: 10.1152/physiol-genomics.00162.2009).
  • Talukder A.K., Marey M.A., Shirasuna K., Kusama K., Shimada M., Imakawa K., Miyamoto A. Roadmap to pregnancy in the first 7 days post-insemination in the cow: Immune crosstalk in the corpus luteum, oviduct, and uterus. Theriogenology, 2020, 150: 313-320 (doi: 10.1016/j.theri-ogenology.2020.01.071).
  • Kues W.A., Sudheer S., Herrmann D., Carnwath J. W., Havlicek V., Besenfelder U., Lehrach H., Adjaye J., Niemann H. Genome-wide expression profiling reveals distinct clusters of tran-scriptional regulation during bovine preimplantation development in vivo. Proceedings of the Na-tional Academy of Sciences, 2008, 105(50): 19768-19773 (doi: 10.1073/pnas.0805616105).
  • Zolini A.M., Block J., Rabaglino M.B., Tríbulo P., Hoelker M., Rincon G., Bromfield J.J., Hansen P.J. Molecular fingerprint of female bovine embryos produced in vitro with high compe-tence to establish and maintain pregnancy. Biology of Reproduction, 2020, 102(2): 292-305 (doi: 10.1093/biolre/ioz190).
  • Ledoux D., Ponsart C., Grimard B., Gatien J., Deloche M.C., Fritz S., Lefebvre R., Humblot P. Sire effect on early and late embryonic death in French Holstein cattle. Animal, 2015, 9(5): 766-774 (doi: 10.1017/S1751731114003140).
  • Hansen P.J., Block J., Loureiro B., Bonilla L., Hendricks K.E.M. Effects of gamete source and culture conditions on the competence of in vitro-produced embryos for post-transfer survival in cattle. Reproduction, Fertility and Development, 2010, 22(1): 59-66 (doi: 10.1071/RD09212).
  • Trasler J.M., Hales B.F., Robaire B. Paternal cyclophosphamide treatment of rats causes fetal loss and malformations without affecting male fertility. Nature, 1985, 316(6024): 144-146 (doi: 10.1038/316144a0).
  • Kumaresan A., Gupta M.D., Datta T.K., Morrell J.M. Sperm DNA integrity and male fertility in farm animals: a review. Frontiers in Veterinary Science, 2020, 7: 321 (doi: 10.3389/fvets.2020.00321).
  • Church R.B., Shea B.F. The role of embryo transfer in cattle improvement programs. Canadian Journal of Animal Science, 1977, 57(1): 33 (doi: 10.4141/cjas77-005).
  • Hasler J.F. Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenol-ogy, the growth of the industry in North America, and personal reminisces. Theriogenology, 2014, 81(1): 152-169 (doi: 10.1016/j.theriogenology.2013.09.010).
  • Thomasen J.R., Willam A., Egger-Danner C., Sørensen A.C. Reproductive technologies combine well with genomic selection in dairy breeding programs. Journal of Dairy Science, 2016, 99(2): 1331-1340 (doi: 10.3168/jds.2015-9437).
  • Camargo L.S.A., Viana J.H.M., Sá W.F., Ferreira A.M., Ramos A.A., Vale Filho V.R. Factors influencing in vitro embryo production. Animal Reproduction, 2006, 3(1): 19-28.
  • Patel D., Haque N., Patel G., Chaudhari A., Madhavatar M., Bhalakiya N. Jamnesha N., Patel P. Implication of embryo transfer technology in livestock productivity. International Journal of Cur-rent Microbiology and Applied Sciences, 2018, 7: 1498-1510.
  • Sirard M.-A. 40 years of bovine IVF in the new genomic selection context. Reproduction, 2018, 156(1): R1-R7 (doi: 10.1530/REP-18-0008).
  • Viana J. 2019 Statistics of embryo production and transfer in domestic farm animals. Embryo Technology Newsletter, 2020, 38(4): 7-26.
  • Lonergan P., Fair T., Forde N., Rizos D. Embryo development in dairy cattle. Theriogenology, 2016, 86(1): 270-277 (doi: 10.1016/j.theriogenology.2016.04.040).
  • Petroman I., Pacala N., Petroman C. Utilization of gestagen hormones and pituitary FSH extracts in inducing the superovulation at embryo donor cows. Journal of Food Agriculture & Environment, 2009, 7(2): 193-195.
  • Desaulniers D.M., Lussier J.G., Gaff A.K., Bousquet D., Guilbault L.A. Follicular development and reproductive endocrinology during and after superovulation in heifers and mature cows dis-playing contrasting superovulatory responses. Theriogenology, 1995, 44(4): 479-497 (doi: 10.1016/0093-691X(95)00220-3).
  • Bó G.A., Mapletoft R.J. Historical perspectives and recent research on superovulation in cattle. Theriogenology, 2014, 81(1): 38-48 (doi: 10.1016/j.theriogenology.2013.09.020).
  • Naranjo-Chacón F., Montiel-Palacios F., Canseco-Sedano R., Ahuja-Aguirre C. Embryo pro-duction in middle-aged and mature Bos taurus ½ Bos indicus cows induced to multiple ovulation in a tropical environment. Tropical Animal Health and Production, 2019, 51: 2641-2644 (doi: 10.1007/s11250-019-01975-2).
  • Wohlres-Viana S., Arashiro E.K.N., Minare T.P., Fernandes C.A.C., Grazia J.G.V., Siqueira L.G.B., Machado M.A., Viana J.H.M. Differential expression of LHCGR and its isoforms is associated to the variability in superovulation responses of Gir cattle. Theriogenology, 2019, 26: 68-74 (doi: 10.1016/j.theriogenology.2018.12.004).
  • Bekele T., Mekuriaw E., Walelegn B. Bovine embryo transfer and its application: arwiew. Journal of Health, Medicine and Nursing, 2016, 26: 48-60.
  • Brigida А., Skachkova О., Bykova О., Sorokin V. Comparative evaluation of the efficiency of poliovulation induction in donor cows using “FSH-super” drug with various injection schemes. Atlantis Press, 2019, 167: 491-497 (doi: 10.2991/ispc-19.2019.110).
  • Cirit Ü., Özmen M.F., Küçükaslan İ., Köse M., Kutsal H.G., Çinar E.M. Effect of the interval from follicle aspiration to initiation of lengthened FSH treatment on follicular superstimulatory and superovulatory responses and embryo production in lactating Simmental cows. Theriogenol-ogy, 2019, 128: 218-224 (doi: 10.1016/j.theriogenology.2019.02.008).
  • Hackett A.J., Durnford R., Mapletoft R.J., Marcus G.J. Location and status of embryos in the gential tract of superovulated cows 4 to 6 days after insemination. Theriogenology, 1993, 40(6): 1147-1153 (doi: 10.1016/0093-691X(93)90285-D).
  • Seidel G.E., Elsen R.E. Embryo transfer in dairy cattle. Hoards Dairyman, 1989.
  • Spencer T.E., Forde N., Dorniak P., Hansen T.R., Romero J.J., Lonergan P. Conceptus derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction, 2013, 146(4): 377-387 (doi: 10.1530/REP-13-0165).
  • Binelli M., Scolari S.C., Pugliesi G., Hoeck V., Gonella-Diaza A.M., Andrade S.C.S., Gas-parin G.R., Coutinho L.L. The transcriptome signature of the receptive bovine uterus determined at early gestation. PLoS ONE, 2015, 10(4): e0122874 (doi: 10.1371/journal.pone.0122874).
  • Hsieh-Li H.M., Witte D.P., Weinstein M., Branford W., Li H., Small K., Potter S.S. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development, 1995, 121(5): 1373-1385.
  • Kwon H.E., Taylor H.S. The role of HOX genes in human implantation. Annals of the New York Academy of Sciences, 2004, 1034 (1): 1-18 (doi: 10.1196/annals.1335.001).
  • Spell A.R., Beal W.E., Corah L.R., Lamb G.C. Evaluating recipient and embryo factors that affect pregnancy rates of embryo transfer in beef cattle. Theriogenology, 2001, 56(2): 287-297 (doi: 10.1016/s0093-691x(01)00563-5).
  • Sartori R., Suárez-Fernández C.A., Monson R.L., Guenther J.N., Rosa G.J.M., Wiltbank M.C. Improvement in recovery of embryos/ova using a shallow uterine horn flushing technique in superovulated Holstein heifers. Theriogenology, 2003, 60(7): 1319-1330 (doi: 10.1016/s0093-691x(03)00147-x).
  • Bó G.A., Mapletoft R.J. Evaluation and classification of bovine embryos. Animal Reproduction, 2013, 10(3): 344-348.
  • Mapletoft R.J., Bo G.A. Bovine embryo transfer. In: Reviews in veterinary medicine /I. Revah (ed.). International Veterinary Information Service, 2016.
  • Castro Neto A.S., Sanches B.V., Binelli M., Seneda M.M., Perri S.H., Garcia J.F. Improvement in embryo recovery using double uterine flushing author links open overlay panel. Theriogenology, 2005, 63(5): 1249-1255 (doi: 10.1016/j.theriogenology.2004.03.022).
  • Quinton H. Commercial embryo transfer activity in Europe 2020. Association of embryo technology in Europe, 2020. Режим доступа: https://www.aete.eu/publications/statistics/. Без даты.
  • Baruselli P.S., Souza A.H., Sá Filho M.F., Marques M.O., Sousa Sales J.N. Genetic market in cattle (Bull, AI, FTAI, MOET and IVP): financial payback based on reproductive efficiency in beef and dairy herds in Brazil. Animal Reproduction, 2018, 15(3): 247-255 (doi: 10.21451/1984-3143-AR2018-0091).
  • Smith A.K., Grimmer S.P. Pregnancy rates for Grade 2 embryos following administration of synthetic GnRH at the time of transfer in embryo-recipient cattle. Theriogenology, 2002, 57(8): 2083-2091 (doi: 10.1016/s0093-691x(02)00704-5).
  • Dochi O., Yamamoto Y., Saga H., Yoshiba N., Kano N., Maeda J., Miyata K., Yamauchi A., Tominaga K., Oda Y., Nakashima T., Inohae S. Direct transfer of bovine embryos frozen-thawed in the presence of propylene glycol or ethylene glycol under on-farm conditions in an integrated embryo transfer program. Theriogenology, 1998, 49(5): 1051-1058 (doi: 10.1016/s0093-691x(98)00053-3).
  • Vasconcelos J.L.M., Jardina D.T.G., Sá Filho O.G., Aragon F.L., Veras M.B. Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows. Theriogenelogy, 2011, 75(6): 1153-1160 (doi: 10.1016/j.theriogenology.2010.11.027).
  • Galli C. Achievements and unmet promises of assisted reproduction technologies in large animals: a personal perspective. Animal Reproduction, 2017, 14(3): 614-621 (doi: 10.21451/1984-3143-AR1005).
  • Erdem H., Karasahin T., Alkan H., Dursun S., Satilmis F., Guler M. Effect of embryo quality and developmental stages on pregnancy rate during fresh embryo transfer in beef heifers. Tropical Animal Health and Production, 2020, 52: 2541-2547 (doi: 10.1007/s11250-020-02287-6).
  • Guemra S., Santo E., Zanin R., Monzani P.S., Sovernigo T.C., Ohashi O.M., Leal C.L.V., Adona P.R. Effect of temporary meiosis block during prematuration of bovine cumulus—oocyte complexes on pregnancy rates in a commercial setting for in vitro embryo production. Theri-ogenology, 2014, 81(7): 982-987 (doi: 10.1016/j.theriogenology.2014.01.026).
  • Humblot P., Bourhis D.L., Fritz S., Colleau J.J., Gonzalez C., Joly C.G., Malafosse A., Hey-man Y., Amigues Y., Tissier M., Ponsart C. Reproductive technologies and genomic selection in cattle. Veterinary Medicine International, 2010: 192787 (doi: 10.4061/2010/192787).
  • Varga E., Kiss R., Papp A.B. In vitro maturation of porcine, bovine and equine oocytes. Literature review. Magyar Allatorvosok Lapja, 2008, 130(9): 542-549.
  • Sirard M.-A., Richard F., Blondin P., Robert C. Contribution of the oocyte to embryo quality. Theriogenology, 2006, 65(1): 126-136 (doi: 10.1016/j.theriogenology.2005.09.020).
  • Soto-Heras S., Paramio M.T. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 2020, 132: 342-350 (doi: 10.1016/j.rvsc.2020.07.013).
  • Cagnone G., Sirard M.-A. The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction, 2016, 152(6): 247-261 (doi: 10.1530/REP-16-0391).
  • El-Sayed A., Hoelker M., Rings, F., Salilew D., Jennen D., Tholen E., Sirard M.A., Schel-lander K., Tesfaye D. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiological Genomics, 2006, 28(1): 84-96 (doi: 10.1152/physiolgenomics.00111.2006).
  • Summers M.C., Biggers J.D. Chemically defined media and the culture of mammalian preim-plantation embryos: historical perspective and current issues. Human Reproduction Update, 2003, 9(6): 557-582 (doi: 10.1093/humupd/dmg039).
  • Farin P.W., Farin C.E. Transfer of bovine embryos produced in vivo or in vitro: Survival and fetal development. Biology of Reproduction, 1995, 52(3): 676-682 (doi: 10.1095/biolre-prod52.3.676).
  • Blondin P., Coenen K., Guilbault L.A., Sirard M.-A. In vitro production of bovine embryos: Developmental competence is acquired before maturation. Theriogenology, 1997, 47(5): 1061-1075 (doi: 10.1016/S0093-691X(97)00063-0).
  • Lonergan P., Fair T. In vitro-produced bovine embryos: dealing with the warts. Theriogenology, 2008, 69(1): 17-22 (doi: 10.1016/j.theriogenology.2007.09.007).
  • Lonergan P., Forde N. Maternal-embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal, 2014, 8(1): 64-69 (doi: 10.1017/S1751731114000470).
  • Suwik K., Boruszewska D., Sinderewicz E., Kowalczyk‐Zieba I., Staszkiewicz‐Chodor J., Woclawek‐Potocka I. Expression profile of developmental competence gene markers in compar-ison with prostaglandin F2αsynthesis and action in the early- and late-cleaved pre-implantation bovine embryos. Reproduction in Domestic Animals, 2021, 56(3): 437-447 (doi: 10.1111/rda.13880).
  • Rizos D., Clemente M., Bermejo-Alvarez P., Fuente J., Lonergan P., Gutiérrez-Adán A. Conse-quences of in vitro culture conditions on embryo development and quality. Reproduction in Do-mestic Animals, 2008, 43(s4): 44-50 (doi: 10.1111/j.1439-0531.2008.01230.x).
  • Sanches B.V., Zangirolamo A.F., Seneda M.M. Intensive use of IVF by large-scale dairy pro-grams. Animal Reproduction, 2019, 16(3): 394-401 (doi: 10.21451/1984-3143-AR2019-0058).
  • Aguila L., Treulen F., Therrien J., Felmer R., Valdivia M., Smith L.C. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals, 2020, 10(12): 2196 (doi: 10.3390/ani10122196).
  • Ealy A.D., Wooldridge L.K., McCoski S.R. Post-transfer consequences of in vitro-produced em-bryos in cattle. Journal of Animal Science, 2019, 97(6): 2555-2568 (doi: 10.1093/jas/skz116).
  • Pollard J.W., Leibo S.P. Chilling sensitivity of mammalian embryos. Theriogenology, 1994, 41(1): 101-106 (doi: 10.1016/S0093-691X(05)80054-8).
  • Rizos D., Ward F., Duffy P., Boland M.P., Lonergan P. Consequences of bovine oocyte matu-ration, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular Reproduction Development, 2002, 61(2): 234-248 (doi: 10.1002/mrd.1153).
  • Canon-Beltran K., Giraldo-Giraldo J., Cajas Y.N., Beltrán-Breña P., Hidalgo C.O., Vásquez N., Leal C.L.V., Gutiérrez-Adán A., González E.M., Rizos D. Inhibiting diacylglycerol acyltransfer-ase-1 reduces lipid biosynthesis in bovine blastocysts produced in vitro. Theriogenology, 2020, 158: 267-276 (doi: 10.1016/j.theriogenology.2020.09.014).
  • Sanches B.V., Lunardelli P.A., Tannura J.H., Cardoso B.L., Pereira M.H.C., Gaitkoski G., Basso A.C., Arnold D.R., Seneda M.M. A new direct transfer protocol for cryopreserved IVF embryos. Theriogenology, 2016, 85(6): 1147-1151 (doi: 10.1016/j.theriogenology.2015.11.029).
  • Wakchaure R., Ganguly S. Twinning in cattle: a review. ARC Journal of Gynecology and Obstetrics, 2016, 1(4): 1-3 (doi: 10.20431/2456-0561.0104001).
  • Winchester C.F. Monozygotic twin beef cattle in nutrition research. Science, 1952, 116(3002): 3.
  • Ozil J.P. Production of identical twins by bisection of blastocysts in the cow. Journal of Repro-duction and Fertility, 1983, 69(2): 463-468 (doi: 10.1530/jrf.0.0690463).
  • Williams T.J., Elsden R.P., Seidel G.E. Jr. Pregnancy rates with bisected bovine embryos. Theri-ogenology, 1984, 22(5): 521-531 (doi: 10.1016/0093-691x(84)90051-7).
  • Warfield S.J., Seidel G.E. Jr., Elsden R.P. Transfer of bovine demi-embryos with and without the zone pellucid. Journal of Animal Science, 1987, 65(3): 756-761 (doi: 10.2527/jas1987.653756x).
  • Matsumoto K., Miyake M., Utumi K., Iritani A. Bisection of rat, goat and cattle blastocysts by metal blade. The Japanese Journal of Animal Reproduction, 1987, 33(1): 1-5 (doi: 10.1262/jrd1977.33.1).
  • Ozil J.P., Heyman Y., Renard J.P. Production of monozygotic twins by micromanipulation and cervical transfer in the cow. Vet Rec., 1982, 110(6): 126-127 (doi: 10.1136/vr.110.6.126).
  • Skrzyszowska, M., Smora̧g, Z., Ka̧tska, L. Demi-embryo production from hatching of zona-drilled bovine and rabbit blastocysts. Theriogenology, 1997, 48(4): 551-557 (doi: 10.1016/s0093-691x(97)00272-0).
  • Silva J.C.E., Diniz P., Costa L.L. Luteotrophic effect, growth and survival of whole versus half embryos and, their relationship with plasma progesterone concentrations of recipient dairy heifers. Animal Reproduction Science, 2008, 104(1): 18-27 (doi: 10.1016/j.anireprosci.2007.01.004).
  • Iturbide A., Torres-Padilla M.-E. A cell in hand is worth two in the embryo: recent advances in 2-cell like cell reprogramming. Current Opinion in Genetics & Development, 2020, 64: 26-30 (doi: 10.1016/j.gde.2020.05.038).
  • Bredbacka P., Jaakma U., Muursepp I. Production of calves following nonsurgical transfer of fresh and refrigerated bovine demi-embryos. Agricultural and Food Science in Finland, 1996, 5(5): 521-527 (doi: 10.23986/afsci.72764).
  • Saito S., Niemann H. In vitro and in vivo survival of bovine demi-embryos following simplified bisection and transfer of one or two halves per recipient. Journal of Reproduction Development, 1993, 39(3): 251-258 (doi: 10.1262/jrd.39.251).
  • Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breed-ing. Journal of Reproduction and Development, 2017, 63(6): 527-538 (doi: 10.1262/jrd.2017-096).
  • Lopatarova M., Cech S., Krontorad P., Holy L., Hlavicov J., Dolezel R. Sex determination in bisected bovine embryos and conception rate after the transfer of female demi-embryos. Veteri-narni medicina, 2008, 53(11): 595-603 (doi: 10.17221/1864-VETMED).
  • Skrzyszowska M., Smorag Z. Cell loss in bisected mouse, sheep and cow embryos. Theriogenology, 1989, 32: 115-122 (doi: 10.1016/0093-691x(89)90527-x).
  • Casser E., Israel S., Boiani M. Multiplying embryos: experimental monozygotic polyembryony in mammals and its uses. The International Journal Developmental Biology, 2019, 63: 143-155 (doi: 10.1387/ijdb.190016mb).
  • Gladchuk I.Z., Doshchechkyn V.V. Subfertility: philosophy and methodology of the problem. Part II. Reproductive Endocrinology, 2018, 42: 8-15 (doi: 10.18370/2309-4117.2018.42.8-15).
  • Sontag L.B., Lorincz М.С., Georg Luebeck Ε. Dynamics, stability and inheritance of somatic DNA methylation imprints. Journal of Theoretical Biology, 2006, 242(4): 890-899 (doi: 10.1016/j.jtbi.2006.05.012).
  • Weber W. Populations and genetic polymorphisms. Molecular Diagnosis, 1999, 4(4): 299-307 (doi: 10.1016/S1084-8592(99)80006-X).
  • Salehi R., Tsoi S.C.M., Colazo M.G., Ambrose D.J., Robert C., Dyck M.K. Transcriptome profiling of in-vivo produced bovine pre-implantation embryos using two-color microarray plat-form. Developmental Biology, 2017, 119: e53754 (doi: 10.3791/53754).
  • Van Hoeck V., Rizos D., Gutierrez-Adan A., Pintelon I., Jorssen E., Dufort I., Sirard M.A., Verlaet A., Hermans N., Bols P.E.J., Leroy J.L.M.R. Interaction between differential gene ex-pression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reproduction, Fertility and Development, 2015, 27(2): 372-384 (doi: 10.1071/RD13263).
  • Lee K.-F., Chow J.F.C., Xu J.S., Chan S.T.H., Ip S.M., Yeung W.S.B., Notes A. A comparative study of gene expression in murine embryos developed in vivo, cultured in vitro, and cocultured with human oviductal cells using messenger ribonucleic acid differential display. Biology of Repro-duction, 2001, 64(3): 910-917 (doi: 10.1095/biolreprod64.3.910).
  • Jones G.M., Cram D.S., Song B., Kokkali G., Pantos K., Trounson A.O. Novel strategy with potential to identify developmentally competent IVF blastocysts. Human Reproduction, 2008, 23(8): 1748-1759 (doi: 10.1093/humrep/den123).
  • Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 2016, 17: 487-500 (doi: 10.1038/nrg.2016.59).
  • Wu C., Sirard M.-A. Parental effects on epigenetic programming in gametes and embryos of dairy cows. Frontiers in Genetics, 2020, 11: 557846 (doi: 10.3389/fgene.2020.557846).
  • Laskowski D., Humblot P., Sirard M.A., Sjunnesson Y., Jhamat N., Båge R., Andersson G. DNA methylation pattern of bovine blastocysts associated with hyperinsulinemia in vitro. Molecular Reproduction and Development, 2018, 85(7): 599-611 (doi: 10.1002/mrd.22995).
  • Wrenzycki C., Herrmann D., Lucas-Hahn A., Korsawe K., Lemme E., Niemann H. Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implica-tions for development. Reproduction, Fertility and Development, 2005, 17(2): 23-35 (doi: 10.1071/rd04109).
  • Bressan F.F., De Bem T.H.C., Perecin F., Lopes F.L., Ambrosio C.E., Meirelles F.V., Miglino M.A. Unearthing the roles of imprinted genes in the placenta. Placenta, 2009: 30(10): 823-834 (doi: 10.1016/j.placenta.2009.07.007).
  • Baroux C., Autran D., Gillmor C.S., Grimanelli D., Grossniklaus U. The maternal to zygotic transition in animals and plants. Cold Spring Harbor Symposia Quantitative Biology, 2008, 73: 89-100 (doi: 10.1101/sqb.2008.73.053).
  • Dobbs K.B., Rodriguez M., Sudano M.J., Ortega M.S., Hansen P.J. Dynamics of DNA methyl-ation during early development of the preimplantation bovine embryo. PLoS ONE, 2013, 8: 66230 (doi: 10.1371/journal.pone.0066230).
  • McKiernan S.H., Bavister B.D. Fertilization and early embryology: Timing of development is a critical parameter for predicting successful embryogenesis. Human Reproduction, 1994, 9(11): 2123-2129 (doi: 10.1093/oxfordjournals.humrep.a138403).
  • Soom A., Ysebaert M.T., Kruif A. Relationship between timing of development, morula mor-phology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Molecular Reproduction and Development, 1997, 47(1): 47-56 (doi: 10.1002/(SICI)1098-2795(199705)47:1-47::AID-MRD7-3.0.CO;2-Q).
  • Gad A., Hoelker M., Besenfelder U., Havlicek V., Cinar U., Rings F., Held E., Dufort I., Sirard M.-A., Schellander K., Tesfaye D. Molecular mechanisms and pathways involved in bovine em-bryonic genome activation and their regulation by alternative in vivo and in vitro culture condi-tions. Biology of Reproduction, 2012, 87(4): 1-13 (doi: 10.1095/biolreprod.112.099697).
  • Humblot P. From clinics to (cow) mics: a reproductive journey. Anim. Reprod., 2018, 15(3): 278-291 (doi: 10.21451/1984-3143-AR2018-0076).
  • Wiggans G.R., Cole J.B., Hubbard S.M., Sonstegard T.S. Genomic selection in dairy cattle: the USDA experience. Annual Review of Animal Biosciences, 2017, 5: 309-327 (doi: 10.1146/annurev-animal-021815-111422).
  • McDaniel B.T., Cassell B.G. Effects of embryo transfer on genetic change in dairy cattle. Journal of Dairy Science, 1981, 64(12): 2484-2492 (doi: 10.3168/jds.S0022-0302(81)82873-1).
  • Mäntysaari E.A., Koivula M., Strandén I. Symposium review: Single-step genomic evaluations in dairy cattle. Journal of Dairy Science, 2020, 103(6): 5314-5326 (doi: 10.3168/jds.2019-17754).
  • Hayes B.J., Bowman P.J., Chamberlain A.J., Goddard M.E. Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 2009, 92(2): 433-443 (doi: 10.3168/jds.2008-1646).
  • Hu Z.-L., Park C.A., Reecy J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research, 2019, 47(D1): D701-D710 (doi: 10.1093/nar/gky1084).
  • Robert C., Nieminen J., Dufort I., Gagné D., Grant J.R., Cagnone G., Plourde D., Nivet A.L., Fournier É., Paquet É., Blazejczyk M., Rigault P., Juge N., Sirard M.A. Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Molecular Reproduction & Development, 2011, 78: 651-664 (doi: 10.1002/mrd.21364).
  • Lund M.S., de Roos A.P., de Vries A.G., Druet T., Ducrocg V., Fritz S., Guillaume F., Guid-brandtsen B., Liu Z., Reents R., Schrooten C., Seefriehd F., Su G. A common reference popu-lation from four European Holstein populations increases reliability of genomic predictions. Ge-netics Selelection Evolution, 2011, 43(43) (doi: 10.1186/1297-9686-43-43).
  • Chesnais J.P., Cooper T.A., Wiggans G.R., Sargolzaei M., Pryce J.E., Miglior F. Using genomics to enhance selection of novel traits in North American dairy cattle. Journal of Dairy Science, 2016, 99(3): 2413-2427 (doi: 10.3168/jds.2015-9970).
Еще
Статья обзорная