Ways to protect equipment from hydraulic shock

Автор: Fang Y., Kudashev S.

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 6 т.10, 2024 года.

Бесплатный доступ

The hydraulic equipment is experiencing damage to its components and even the mechanical equipment owing to hydraulic shock induced by a sudden rise in load, resulting in a step reaction in the hydraulic system. An analysis of the hydraulic system is conducted to protect the equipment from the detrimental effects of hydraulic shock. This analysis includes examining components such as the hydraulic damper, centrifugal pump, accumulator, control valve, and others. The primary function of the power component is to mitigate hydraulic stress by altering the pump’s flow rate. The control element initiates the reversing of the valve in the hydraulic system in order to mitigate hydraulic shock. The auxiliary components primarily concentrate on enhancing the efficiency of the accumulator and maximizing the synergistic utilization of damping components. By adjusting the input value, one may regulate the flow rate and pressure of the system. The discussion revolves around finding the most efficient frequency in the shortest amount of time.

Еще

Hydraulic shock, hydraulic system, properties research, energy chain calculation

Короткий адрес: https://sciup.org/14130174

IDR: 14130174   |   DOI: 10.33619/2414-2948/103/33

Список литературы Ways to protect equipment from hydraulic shock

  • Liu, Y., Zhang, J., Yu, X., Qiu, W., & Liu, Z. (2024). Mechanism and quantitative criterion of free vibration characteristics of hydraulic systems using the water hammer reflection coefficient.Communications in Nonlinear Science and Numerical Simulation, 133, 107959. DOI: 10.1016/j.cnsns.2024.107959 EDN: MPYQVN
  • Wang, C., Wang, J., Guo, Q., Ren, X., Cao, Y., & Jiang, D. (2024). Fixed-time adaptive neural control of electro-hydraulic system with model uncertainties: Theory and experiments. Control Engineering Practice, 147, 105931. DOI: 10.1016/j.conengprac.2024.105931 EDN: TTLUZD
  • Lu, Y., & Tan, L. (2024). Design method based on a new slip-diffusion parameter of centrifugal pump for multiple conditions in wide operation region. Energy, 130796. DOI: 10.1016/j.energy.2024.130796
  • Lv, G., Yang, X., Gao, Y., Wang, S., Xiao, J., Zhang, Y.,.. & Yang, H. (2023). Investigation on fretting Wear performance of laser cladding WC/Co06 coating on 42CrMo steel for hydraulic damper.International Journal of Refractory Metals and Hard Materials, 111, 106068. DOI: 10.1016/j.ijrmhm.2022.106068 EDN: CGHHQY
  • Li, Y., Liu, D., Cui, B., Lin, Z., Zheng, Y., & Ishnazarov, O. (2024). Studying particle transport characteristics in centrifugal pumps under external vibration using CFD-DEM simulation. Ocean Engineering, 301, 117538. DOI: 10.1016/j.oceaneng.2024.117538 EDN: GYFZDE
  • Wang, B., Cheng, F. R., & Tang, X. Z. (2023). Research on the complete vehicle control strategy of the composite accumulator hydraulic hybrid power system. Journal of Energy Storage, 74, 109384. DOI: 10.1016/j.est.2023.109384 EDN: VDYOYI
  • Li, S., Deng, G., Hu, Y., Yu, M., & Ma, T. (2024). Optimization of structural parameters of pilot-operated control valve based on CFD and orthogonal method. Results in Engineering, 101914. DOI: 10.1016/j.rineng.2024.101914
  • Левцев А. П., Кудашев С. Ф., Макеев А. Н., Лысяков А. И. Влияние импульсного режима течения теплоносителя на коэффициент теплопередачи в пластинчатом теплообменнике системы горячего водоснабжения // Современные проблемы науки и образования. 2014. №2. С. 89-89. EDN: SBWDKF
  • Левцев А. П., Макеев А. Н., Макеев Н. Ф., Нарватов Я. А., Голянин А. А. Обзор и анализ основных конструкций ударных клапанов для создания гидравлического удара // Современные проблемы науки и образования. 2015. №2-2. С. 188-188. EDN: UZJAOV
  • Александров А. А., Григорьев Б. А. Таблицы теплофизических свойств воды и водяного пара. М.: МЭИ, 2006. 168 с. EDN: RZDEKT
Еще
Статья научная