Wheat can acclimate to seawater by pretreatment with kinetin and spermine through osmotic adjustment and solutes allocation

Автор: Aldesuquy Heshmat S., Baka Zakaria A., Mickky Berdees M.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.9, 2013 года.

Бесплатный доступ

A key issue in salt adaptation is the osmotic adjustment, therefore, during ear emergence the effect of exogenous application of kinetin and spermine on osmotic pressure (OP) and solutes allocation (total soluble sugars, total soluble nitrogen, proline, organic acids and inorganic ions (Na +, K +, Ca 2+, Mg 2+ and Cl -) were quantified in flag leaf of wheat plants irrigated by seawater at 25%. Seawater salinity induced significant increase in osmotic pressure. Furthermore, seawater stress induced marked increase in total soluble sugars, total soluble nitrogen, proline, organic acids, as well as Na +, K +, Ca ++, Mg ++, Cl - and P +++ in wheat flag leaf. On the other hand, seawater decreased SPR, SAR and PAR in flag leaves of wheat plants. Grain priming with kinetin, spermine or their interaction appeared to mitigate the ill effect of seawater on wheat plants by increasing its own capability to be more tolerant against seawater salinity by inducing additional increase in osmotic pressure and the osmolytes concentrations in flag leaf during ear emergence. Moreover, the effect was more pronounced with the interaction of kinetin and spermine treatment.

Еще

Compatible solutes, kinetin, osmotic adjustment, seawater, spermine, wheat

Короткий адрес: https://sciup.org/14323764

IDR: 14323764

Список литературы Wheat can acclimate to seawater by pretreatment with kinetin and spermine through osmotic adjustment and solutes allocation

  • Agarwal, R. K. and Gupta, S. C. (1995) Plant growth substances as osmoregulants under salt stress in callus cultures of cowpea. Indian J Plant Physiol., 38: 325-327.
  • Alamgir, A. N. M., Musa, M. and Ali, M.Y. (2008) Some aspects of mechanisms of NaCl stress tolerance in the seedlings of four rice genotypes. Bangladesh J Bot., 36: 181-184.
  • Alcázar, R, Marco, F., Cuevas,J.C., Patron, M., Ferrando, A., Carrasco, A.P., Tiburcio, A.F. and Altabella, T. (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Letters, 28: 1867-1876.
  • Aldesuquy, H.S., Baka, Z.A. M., El-Shehaby, O. A. and Ghanem, H. E. (2012) Efficacy of seawater salinity on osmotic adjustment and solutes allocation in wheat (Triticum aestivum) flag leaf during grain filling. Int J Plant Physiol and Biochem.,4: 33-45.
  • Aldesuquy, H.S., Haroun, S.A., Abo-Hamed, S.A. and Elsaied, A.A. (2011) Physiological studies of some polyamines on wheat plants irrigated with waste water. Osmolytes in relation to osmotic adjustment and grain yield. Phyton, 50: 263-268.
  • Alves, A.A.C. and Setter, T.L. (2004) Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ. and Exp Bot., 51: 259-271
  • Amini, F. and Ehsanpour, A.A. (2005) Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentimill) cultivars under in vitro salt stress. Amer. J Biochem and Biotechnol, 1: 212-216.
  • Ashraf, M. and Foolad, M.R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ and Exp Bot., 59: 206-216.
  • Ashraf, M and Harris, P.J.C. (2004) Potential biochemical indicators of salinity tolerance in plant. Plant Sci., 166: 3-16.
  • Barker, J. and Mapson, L.W. (1964). Studies on the respiratory and carbohydrate metabolism of plant tissues. J Exp Bot., 15: 272-283.
  • Bartels, D. and Sunkar, R. (2005) Drought and salt tolerance in plants. CRC Critical Reviews in Plant Sci., 24: 23-58.
  • Begum, F. and Karmoker, J. L. (1999) Effect of salinity on the accumulation and distribution of proline in wheat. Rachis, 18: 22-25.
  • Ben Khaled, L., Morte-Gomez, A, Honrubia, M and Oihabi, A. (2003). Effet du stress salin en milieu hydroponique sur le trèfle inoculé par le Rhizobium. Agronomie, 23: 553-560.
  • Besford, R.T., Richardson, C. M., Campos, J. L. and Tiburcio, A. F. (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stress oat leaves. Planta, 189: 201-206.
  • Blum, A. (1996) Crop response to drought and the interpretation of adaptation. Plant Growth Regul., 20: 135-148.
  • Bray, E.A., Bailey-Serres, J. and Weretilnyk, E (2000) Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants. (eds. Gruissem, W., Buchannan, B. and Jonesm, R.). American Society of Plant Physiologists, Rockville, MD, pp 1158-1249.
  • Chapman, H.D. and Pratt, P. F. (1978) Methods of analysis for soils, plants and waters. Univ. California, Div. Agric. Sci.
  • Chen, S.J. and Ching, H. K. (1996) Polyamines in relation to ammonium-inhibited growth in suspension-cultured rice sells. Bot Bull Acad Sinica, 37: 197-200.
  • Duana, J., Lia, J., Guo, S. R. and Kanga, Y. (2007) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Plant Physiol., 165: 1620-1635.
  • Ehlting, B., Dluzniewska, P., Dietrich, H. and Selle, A. (2007) Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba). Plant Cell and Environ., 12: 1-16.
  • El-Bassiouny, H.M., Mostafa, H. A., El-Khawas, S. A., Hassanein, R. A., Khalil, S. I. and Abd El-Monem, A. A. (2008) Physiological responses of wheat plant to foliar treatments with arginine or putrescine. Aust J Basic and Applied Sci., 2: 1390-1403.
  • El-Sawy, O.E.H. (2009) Protective effects of polyamines on wheat plants irrigated by seawater. Ph. D. Thesis, Fac. Sci., Mans. Univ., Egypt.
  • El-Sharkawi, H.M.and Abdel Rahman, A.A. (1974) Response of olive and almond orchards to partial irrigation under dry farming practices in semi arid regions. ΙΙ. Plant soil water relations in olive during the growing season. Plant and Soil, 41: 13-32.
  • Ford, C.W. and Wilson, J.R. (1981) Change in levels of solutes during osmotic adjustment to water stress in leaves of four tropical pasture species. Aust J Plant Physiol., 8: 77-91.
  • Friedman, T.E. and Haugen, G.E. (1943) Pyruvic acid. ΙΙ. The determination of keto acids in blood and urine. J Biol Chem., 147: 415-442.
  • Gadallah, M.A.A. (1999) Effects of kinetin on growth, grain yield and some mineral elements in wheat plants growing under excess salinity and oxygen deficiency. Plant Growth Regul., 27: 63-74.
  • Guo, L.Q., Shi1, D. C. and Wang, D. L. (2009) The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. J Agron and Crop Sci., 196: 123-135.
  • Hansen, E.M. and Munns, D.N.(1988) Effect of CaSO4 and NaCl on mineral content of Leucaena leucocephala. Plant and Soil, 107: 101-105.
  • Hasaneen, M.N.A., Younis, M.E. and El-Saht, H.M. (1990) Plant growth, metabolism and adaptation in relation to stress conditions ΧΙΙ. Carbohydrates and acid accumulation in Phaseolus vulgaris and Zea mays stressed with sodium sulphate. Qater Univ. Sci. Bull., 10: 185-197.
  • Hassanein, R.A., Baraka, D. M. and Khalil, R. R. (2008) Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. II. Changes in nitrogen constituents, protein profiles, protease enzyme and certain inorganic cations. Aust J Basic and Appl Sci., 2: 350-359.
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, H.J. (2000) Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Physiol. and Plant Mol Biol., 51: 463-499.
  • He, L., Nada, K. and Tachibana, S. (2002) Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). J Japan Soc Horticult. Sci., 71: 490-498.
  • Hoque, M.D.A., Okuma, E. Banu, M.N.A., Nakamura, Y., Shimoishi, Y. and Y Murata, Y. (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Plant Physiol., 164: 553-561.
  • Humphries, E.C. (1956) Mineral components and ash analysis. In: Modern Method of Plant Analysis (eds. Pesch, K. and Tracey, M.V.). Springer-Verlag, Berlin.
  • Hussein, M.M., EL-Gereadly, N.H.N. and EL-Desuki, M. (2006) Role of putrescine in resistance to salinity of pea plants (Pisum sativum L.). J Appl Sci. Res., 2: 598-604.
  • Ibraheem I.F. (1999) Physiological effects of some uriede compounds on cultured Phaseolus vulgaris seedlings in vivo and in vitro. M. Sc. Thesis, Fac. Sci., Mans. Univ., Mansoura, Egypt.
  • Ibrahim, A.H. (2004) Efficacy of exogenous glycine betaine application on sorghum plants grown under salinity stress. Acta Bot. Hung., 43: 307-318.
  • Iqbal, M. and Ashraf, M. (2007) Seed preconditioning modulates growth, ionic relations and photosynthetic capacity in adult plants of hexaploid wheat under salt stress. J Plant Nutrition, 30: 381-396.
  • Iqbal, M., Ashraf, M. and Jamil, A. (2006) Seed enhancement with cytokinins: Changes in growth and grain yield in salt-stressed wheat plants. Plant Growth Regul., 50: 29-39.
  • Izzo, R., Incerti, A and Bertolla, C. (2008) Seawater irrigation: Effects on growth and nutrient uptake of sunflower plants. In: Biosaline Agriculture and High Salinity Tolerance. pp 61-69.
  • Jimenez-Bremont J.F., Becerra-Flora, A., Hernandez-Lucero, E., Rodriguez-Kessler, M., costa-Gallegos, J. A. and Ramirez-Pimentel, J.G. (2006) Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biologia Plant., 50: 763-766.
  • Jin, Z.M., Wang, C.H., Liu, Z.P. and Gong, W.J. (2007) Physiological and ecological characters studies on Aloe vera under soil salinity and seawater irrigation. Process Biochem., 42: 710-714.
  • Kader, M.A. and Lindberg, S. (2005) Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice (Oryza sativa L.) determined by the fluorescent dye SBFI. J Exp Bot., 56: 3149-3158.
  • Kakkar, R.K. and Nagar, P.K. (1996) Polyamines and senescence of maintenance foliage of tea, Camellia sinensis L. Biologia Plant., 38: 153-157.
  • Kakkar, R.K., Nagar, P.K., Ahuja P.S. and Rai, V.R. (2000) Polyamines and plant morphogenesis. Biol. Plant., 43: 1-11.
  • Kasinathan, V. and Wingler, A. 2004. Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant., 121: 101-107.
  • Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I. and Tachibana, S. (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Cell Physiol., 45: 712-22.
  • Kavi, K.P.B., Sangam, S., Amrutha, R.N., Laxmi, P.S. and Naidu, K.R. (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Sci., 88: 424-438.
  • Khan, D. and Ahmad, R. (2007) Effects of irrigation with amended dilutions of seawater on germination, growth and ionic distribution in Pennisetum divisum (GMEL.) HENR -An arid psammophytic perennial graminoid. Inter J Biol and Biotechnol., 4: 347-355.
  • Khan N.A., Syeed, S. A. Masood, Nazar, R. and Iqbal, N. 2010. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Inter. J. Plant Biol., 1: 1-8.
  • Khorshidi, M.B., Yarnia, M. and Hassanpanah, D. (2009) Salinity effect on nutrients accumulation in alfa alfa shoots in hydroponic condition. J. Food Agric. Environ., 7: 787-790.
  • Kohler, J., Hernández, J.A., Caravaca, F. and Roldán, A. (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ and Exp Bot., 65: 245-252.
  • Koyro, H.W. (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of potential cash crop halophyte Plantago coronopus L. Environ and Exp Bot., 56: 136-146.
  • Koyro, H.W., Lieth, H. and Said, S. (2008) Salt tolerance of Chenopodium quinoa Willd., grains of the Andes: Influence of salinity on biomass production, yield, composition of reserves in the seeds, water and solute. In: Mangroves and Halophytes: Restoration and Utilisation. Part III, pp 133-145.
  • Kuznetsov, V.V. and Shevyakova, N.I. (1997) Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiol Plant., 100: 320-326.
  • Lecoeur, J., Wery, J. and Turc, O. (1992) Osmotic adjustment as a mechanism of dehydration postponement in chick pea (Cicer arietinum L.) leaves. Plant and Soil, 144: 177-189.
  • Liu, H., Yu, B.J., Zhang, W. and Liu, Y. (2005) Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seedling roots. Plant Sci., 168: 1599-1607.
  • Liu, J., Wu, X., He, T. and Zhang, W. (2004) Study of ultrastructure of Phragmites communis mesophyll cell under salt stress. Acta Bot Boreali-occidentalia Sinica, 24: 1035-1040.
  • Maggio, A., Migazaki, S.P., Veronese, T., Fujita, H.I., Ibeas, B., Damsz, M.L., Navasimhan, P.M. Joly R.A. and Bressan, R.A. (2002) Does proline accumulation play an active role in stress induced growth reduction? The Plant J., 31: 169-712.
  • Maiale, S., Sanchez, D.H., Guirado, A., Vidal, A. and Ruiz, O.A. 2004. Spermine accumulation under salt stress. Plant Physiol., 161: 35-42.
  • Martínez, J.P., Kinet, J.M., Bajji, M. and Lutts, S. (2005) NaCl alleviates polyethylene glycol induced water stress in the halophyte species (Atriplex halimus L.). J Exp Bot., 56: 2421-2431.
  • McKell, C.M. and Goodin, J. K. (1984) A brief overview of the saline lands of the United States. Research and development seminar on forage and fuel production from salt-affected Wasteland, Western Australia.
  • Misra, N. and Saxena, P. (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci., 177: 181-189.
  • Munns, R. (2005) Genes and salt tolerance: Bringing them together. New Phytol., 167: 645-663.
  • Munns, R. and Tester, M. (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol., 59: 651-681.
  • Murakeozy, E.P., Nagy, Z. Duhaze, C., Bouchereau, A and Tuba, Z. (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Plant Physiol., 160: 395-401.
  • Murphy, L.R., Kinsey, S.T. and Durako, M.J. (2003) Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Bot., 75: 293-309.
  • Neocleous, D. and Vasilakakis, M. (2007) Effects of NaCl stress on red raspberry (Rubus idaeus L. and Autumn Bliss L.). Scientia Horticult., 112: 282-289.
  • Oliveira, H., Barros, A.S., Delgadillo, I., Coimbra, M.A. and Santosa, C. (2009) Effects of fungus inoculation and salt stress on physiology and biochemistry of in vitro grapevines: Emphasis on sugar composition changes by FT-IR analyses. Environ and Exp Bot., 65: 1-10.
  • Ottow, E.A., Brinker, M., Teichmann, T., Fritz, E., Kaiser, W., Brosché, M., Kangasjärvi, J., Jiang, X. and Polle, A. (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol., 139: 1762-1772.
  • Pandy, S. and Srivastava, H. S.(1995) Stimulation of growth and nitrate assimilation in Leucaena leucocephala seedlings in response to spermidine supply. Biol Plant., 37: 153-157.
  • Pine, N.W. (1955) Proteins. In: Modem methods of plant analysis. (Peack, K. and Tracey, M. V., eds) IV, 23, Springer Verlage, Berlin.
  • Pospisilova, J., Synková, H. and Rulcová, J. (2000) Cytokinins and water stress: Minireview. Biol Plant., 43: 321-328.
  • Pérez-Pérez, J.G., Robles, J.M., Tovar, J.C. and Botìa, P. (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Scientia Horticult., 122: 83-90.
  • Rabie, G.H. (2005) Influence of arbuscular Mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza, 15: 225-230.
  • Ramoliya, P.J., Patel, H.M. and Pandey, A.N. (2004) Effect of salinisation of soil on growth and macro-and micro-nutrient accumulation in seedlings of Acacia catechu (Mimosaceae). Annals Appl Biol., 144: 321-332.
  • Rayle, D.L., Ross, C.W. and Robinson, N. (1982) Estimation of osmotic parameters accompanying zeatin-induced growth of detached cucumber cotyledons. Plant Physiol., 70: 1634-1636.
  • Reed, A.J. and Hageman, R.H. (1980) Relationship between nitrate uptake, flux and reduction and accumulation of reduced nitrogen in maize (Zea mays L). II. Effect of nutrient nitrate concentration. Plant Physiol., 66: 1184-1189.
  • Snedecor, G.W. and Cochran, W.G. (1976) Statistical Methods. 6th Ed. Oxoford IBH Publishing Co. New Delhi.
  • Snell, F.D. and Snell, C.T. (1949) Colorimetric methods of analysis. Volume ΙΙ. D. Van Nostrand Co. Inc., New Yourk.
  • Snell, F.D. and Snell, C.T. (1954) Colorimetric methods of analysis. Volume IV. D. Van Nostrand Co. Inc., New Yourk.
  • Soares GMB, MTP Amorim, R Hrdina and M Costa-Ferreira, 2002. Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem., 37: 581-587.
  • Subbarao, G.V., Nam, N.H., Chauhan, Y.S. and Johansen, C. 2000. Osmotic adjustment, water relations and carbohydrate remobilization in pigeon pea under water deficits. Plant Physiol., 157: 651-659.
  • Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K.and Shinozaki, K. (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant J, 29: 417-426.
  • Tawfik, M.M., Bahr, A.A. and Salem, A.K.M. (2006) Response of kaller grass (Leptochloa fusca L.) to biofertilizer inoculation under different levels of seawater irrigation. J Appl Sci Res., 2: 1203-1211.
  • Thomas, J.C., McElwain, E.F. and Bohnert, H.J. (1992) Convergent induction of osmotic stress-response. Abscisic acid, cytokinin, and the effects of NaCl. Plant Physiol., 100: 416-423.
  • Thomas, J.C., Smigocki, A.C. and Bohnert, H.J. (1995) Light-induced expression of ipt from Agrobacterium tumefaciens results in cytokinin accumulation and osmotic stress symptoms in transgenic tobacco. Plant Mol. Biol., 27: 225-235.
  • Tipirdamaz, R., Durusoy, M. and Bozcuk, S. (1995) Effect of exogenous polyamines on alpha-amylase activity during seed germination under salt stress. Turkish J. Bot., 19: 411-416.
  • Türkan, I. and Demiral, T. (2009) Recent developments in understanding salinity tolerance. Environ and Exp. Bot., 67: 2-6.
  • Walter, H. (1949) Gundlagen der flanzen verlientung. Eintubring, in di pflanzengeographie-fur studierends der hocholen, standorstlehre: Stuttgart Ulmer.
  • Wang, S., Yongxia, J., Guo, S. and Zhou, G. (2007) Effects of polyamines on K+, Na+ and Cl-content and distribution in different organs of cucumber (Cucumis sativus L.) seedlings under NaCl stress. Frontiers of Agric in China, 1: 430-437.
  • Widodo, J.H.P., Patterson, J.H., Newbigin, E.D., Tester, M., Bacic, N. and Roessner, U. (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot., 60: 4089-4103.
  • Xuan, L. and Catherine, G. (2009) Accumulation of chiro-inositol and other non-structural carbohydrates in Limonium species in response to saline irrigation waters. J Amer. Soc. Horticult. Sci., 134: 329-336.
  • Yadav, N., Gupta, V. and Yadav, V.K. (1997) Role of benzyladenine and gibberellic acid in alleviating water-stress effect in gram (Cicer arietinum). Indian J Agric. Sci., 67: 381-387.
  • Zhifang, G. and Loescher, W.H. (2003) Expression of a celerymannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell and Environment., 26: 275-283.
Еще
Статья научная