Wheat genome sequence opens new opportunities to understand the genetic basis of frost tolerance (FT) and marker-assisted breeding in wheat (Triticum aestivum L.)
Автор: Kumar Pardeep, Patni Babita, Singh Machiavelli
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.18, 2022 года.
Бесплатный доступ
The population is increasing day by day and agricultural land is occupied by urban cities because of the shortage of residential areas and by increasing the industries the pollution is at peak level that causes climate change and uses of chemical fertilizers the soil fertility is decreased. Due to these environmental conditions the overall yield of cereals crops is reduced. The wheat is a major food source for all over the world. But the production of wheat nowadays is more far from the requirement. After the availability of whole genome sequence of bread wheat opens many new opportunities for scientists. This whole genome helps in deep analysis and to formulate new breeding technology and to develop an advanced variety of bread wheat that fulfills the need of requirement. The environment conditions (abiotic and biotic stresses) have a severe impact on wheat growth and development that reduces the overall yield. In winter wheat the cold stress causes delay in the fruiting process and break in growth. After the availability of the whole genome of wheat the deep analysis showed the presence of some frost tolerance genes. The over expression of these genes in Arabidopsis showed the increase in frost tolerance. This deep analysis helps breeders to come up with more stress tolerance variety. It also helps in finding new molecular markers that help in marker assisted breeding and in speed breeding. The advancement of Genomic and Proteomic drive the crop biotechnology to resolve the shortage of food for a large population.
Wheat, genome sequence, frost tolerance
Короткий адрес: https://sciup.org/143178335
IDR: 143178335
Список литературы Wheat genome sequence opens new opportunities to understand the genetic basis of frost tolerance (FT) and marker-assisted breeding in wheat (Triticum aestivum L.)
- Ahanger, M. A., Akram, N. A., Ashraf, M., Alyemeni, M. N., Wijaya, L., & Ahmad, P. (2017). Plant responses to environmental stresses—from gene to biotechnology. AoB PLANTS, 9(4). https://doi.org/10.1093/aobpla/plx025
- Avni, R., Nave, M., Barad, O., Baruch, K., Twardziok, S. O., Gundlach, H., Hale, I., Mascher, M., Spannagl, M., Wiebe, K., Jordan, K. W., Golan, G., Deek, J., Ben-Zvi, B., Ben-Zvi, G., Himmelbach, A.,
- MacLachlan, R. P., Sharpe, A. G., Fritz, A. Distelfeld, A. (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357(6346), 93-97. https://doi.org/10.1126/science.aan0032
- Babben, S., Perovic, D., Koch, M., & Ordon, F. (2015). An efficient approach for the development of locus specific primers in bread wheat (Triticum aestivum L.) and its application to re-sequencing of genes involved in frost tolerance. PLOS ONE, 10(11), e0142746. https://doi.org/10.1371/journal.pone.0142746
- Babben, S., Schliephake, E., Janitza, P., Berner, T., Keilwagen, J., Koch, M., Arana-Ceballos, F. A., Templer, S. E., Chesnokov, Y., Pshenichnikova, T., Schondelmaier, J., Börner, A., Pillen, K., Ordon, F., & Perovic, D. (2018). Association genetics studies on frost tolerance in wheat (Triticum aestivum L.) reveal new highly conserved amino acid substitutions in CBF-A3, cbf-a15, vrn3 and PPD1 genes. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4795-6
- Baga, M., Chodaparambil, S. V., Limin, A. E., Pecar, M., Fowler, D. B., & Chibbar, R. N. (2006). Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Functional & Integrative Genomics, 7(1), 53-68. https://doi.org/10.1007/s10142-006-0030-7
- Baillo, Kimotho, Zhang, & Xu. (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 10(10), 771. https://doi.org/10.3390/genes10100771
- Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., D'Amore, R., Allen, A. M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.,
- Sehgal, S., Gill, B..... Hall, N. (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491(7426), 705-710. https://doi.org/10.1038/nature11650
- Cai, H., Tian, S., Liu, C., & Dong, H. (2011). Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene, 485(2), 146-152. https://doi.org/10.1016/j.gene.2011.06.026
- Chen, Y., Carver, B. F., Wang, S., Cao, S., & Yan, L. (2010). Genetic regulation of developmental phases in winter wheat. Molecular Breeding, 26(4), 573582. https://doi.org/10.1007/s11032-010-9392-6
- Chinnusamy, V., Zhu, J., & Zhu, J. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12(10), 444-451. https://doi.org/10.1016/j.tplants.2007.07.002
- Cobb, J. N., Biswas, P. S., & Platten, J. D. (2018). Back to the future: Revisiting MAS as a tool for modern plant breeding. Theoretical and Applied Genetics, 132(3), 647-667. https://doi.org/10.1007/s00122-018-3266-4
- Dhillon, T., Pearce, S. P., Stockinger, E. J., Distelfeld, A., Li, C., Knox, A. K., Vashegyi, I., Vagujfalvi, A., Galiba, G., & Dubcovsky, J. (2010). undefined. Plant Physiology, 153(4), 1846-1858. https://doi.org/10.1104/pp.110.159079
- Eagles, H. A., Cane, K., & Trevaskis, B. (2011). Veery wheats carry an allele of Vrn-A1 that has implications for freezing tolerance in winter wheats. Plant Breeding, 130(4), 413-418. https://doi.org/10.1111/j.1439-0523.2011.01856.x
- Farooqi, M. Q., Zahra, Z., & Lee, J. K. (2018). Molecular genetic approaches for the identification of candidate cold stress tolerance genes. Cold Tolerance in Plants, 37-51. https://doi.org/10.1007/978-3-030-01415-5_2
- Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzalez, R. H., Yanes, L., Mendoza-Suarez, M., Simmonds, J., Wells, R., Rayner, T., Green, P., Hafeez, A., Hayta, S., Melton, R. E., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M..... Hickey, L. T. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 13(12), 2944-2963. https://doi.org/10.1038/s41596-018-0072-z
- Guo-Liang Jiang (2013). Molecular Markers and Marker-Assisted Breeding in Plants, Plant Breeding from Laboratories to Fields, Sven Bode Andersen, IntechOpen, DOI: 10.5772/52583. https://www.intechopen.com/books/plant-breeding-from-laboratories-to-fields/molecular-markers-and-marker-assisted-breeding-in-plants
- John, R., Anjum, N. A., Sopory, S. K., Akram, N. A., & Ashraf, M. (2016). Some key physiological and molecular processes of cold acclimation. Biologia plantarum, 60(4), 603-618. https://doi.org/10.1007/s10535-016-0648-9
- Knox, A. K., Li, C., Vagujfalvi, A., Galiba, G., Stockinger, E. J., & Dubcovsky, J. (2008). Identification of candidate CBF genes for the frost tolerance locus Fr-A M 2 in triticum monococcum. Plant Molecular Biology, 67(3), 257-270. https://doi.org/10.1007/s11103-008-9316-6
- Kocsy, G., Athmer, B., Perovic, D., Himmelbach, A., Szucs, A., Vashegyi, I., Schweizer, P., Galiba, G., & Stein, N. (2010). Regulation of gene expression by chromosome 5a during cold hardening in wheat. Molecular Genetics and Genomics, 283(4), 351363. https://doi.org/10.1007/s00438-010-0520-0
- Mao, X., Jia, D., Li, A., Zhang, H., Tian, S., Zhang, X., Jia, J., & Jing, R. (2011). Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in arabidopsis. Functional & Integrative Genomics, 11(3), 445-465. https://doi.org/10.1007/s10142-011-0218-3
- Miller, A. K., Galiba, G., & Dubcovsky, J. (2005). A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A M 2 in triticum monococcum. Molecular Genetics and Genomics, 275(2), 193-203. https://doi.org/10.1007/s00438-005-0076-6
- Motomura, Y., Kobayashi, F., Iehisa, J. C., & Takumi, S. (2013). A major quantitative trait locus for cold-responsive gene expression is linked to frost-resistance gene Fr-A2 in common wheat. Breeding Science, 63(1), 58-67. https://doi.org/10.1270/jsbbs.63.58
- Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Dogan, Y., Comertpay, G., Yildiz, M., Hatipoglu, R., Ahmad, F., Alsaleh, A., Labhane, N., Ozkan, H., Chung, G., & Baloch, F. S. (2017). DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261-285. https://doi.org/10.1080/13102818.2017.1400401
- Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., Vautrin, S., Berges, H., Eversole, K., Appels, R., Safar, J..... Feuillet, C. (2008). A physical map of the 1-Gigabase bread wheat chromosome 3B. Science, 322(5898), 101-104. https://doi.org/10.1126/science.1161847
- Skinner, D. Z. (2009). Post-acclimation transcriptome adjustment is a major factor in freezing tolerance of winter wheat. Functional & Integrative Genomics, 9(4), 513-523. https://doi.org/10.1007/s10142-009-0126-y
- Soltesz, A., Smedley, M., Vashegyi, I., Galiba, G., Harwood, W., & Vagujfalvi, A. (2013). Transgenic Barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany, 64(7), 1849-1862. https://doi.org/10.1093/jxb/ert050
- Sthapit Kandel, J., Huang, M., Zhang, Z., Skinner, D., & See, D. (2018). Genetic diversity of Clinal freezing tolerance variation in winter wheat landraces. Agronomy, 8(6), 95. https://doi.org/10.3390/agronomy8060095
- Sutton, F., Chen, D., Ge, X., & Kenefick, D. (2009). Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and - susceptible, winter wheat mutant lines. BMC Plant Biology, 9(1), 34. https://doi.org/10.1186/1471-2229-9-34
- Thomashow, M. F. (2010). Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway: Figure 1. Plant Physiology, 154(2), 571-577. https://doi.org/10.1104/pp.110.161794
- Vagujfalvi, A., Aprile, A., Miller, A., Dubcovsky, J., Delugu, G., Galiba, G., & Cattivelli, L. (2005). The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Molecular Genetics and Genomics, 274(5), 506-514. https://doi.org/10.1007/s00438-005-0047-y
- Wang, J., Li, Q., Mao, X., Li, A., & Jing, R. (2016). Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. International Journal of Biological Sciences, 12(2), 257-269. https://doi.org/10.7150/ijbs.13538
- Wang, J., Mao, X., Wang, R., Li, A., Zhao, G., Zhao, J., & Jing, R. (2019). Identification of wheat stress-responding genes and tapr-1-1 function by screening a cDNA yeast library prepared following abiotic stress. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-37859-y
- Winfield, M. O., Lu, C., Wilson, I. D., Coghill, J. A., & Edwards, K. J. (2010). Plant responses to cold: Transcriptome analysis of wheat. Plant Biotechnology Journal, 8(7), 749-771. https://doi.org/10.1111/j.1467-7652.2010.00536.x.
- Wolter, F., Schindele, P., & Puchta, H. (2019). Plant breeding at the speed of light: The power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-1775-1
- Xia, N., Zhang, G., Liu, X., Deng, L., Cai, G., Zhang, Y., Wang, X., Zhao, J., Huang, L., & Kang, Z. (2010). Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 37(8), 3703-3712. https://doi.org/10.1007/s11033-010-0023-4
- Yokota, H., Iehisa, J. C., Shimosaka, E., & Takumi, S. (2015). Line differences in cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids. Journal of Plant Physiology, 176, 78-88. https://doi.org/10.1016/jjplph.2014.12.007
- Yu, X., Han, J., Wang, E., Xiao, J., Hu, R., Yang, G., & He, G. (2019). Genome-wide identification and Homoeologous expression analysis of PP2C genes in wheat (Triticum aestivum L.). Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00561
- Zhang, L., Zhao, G., Xia, C., Jia, J., Liu, X., & Kong, X. (2012). Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic arabidopsis. Gene, 505(1), 100-107. https://doi.org/10.1016/j.gene.2012.05.033
- Zimin, A. V., Puiu, D., Hall, R., Kingan, S., Clavijo, B. J., & Salzberg, S. L. (2017). The first near-complete assembly of the hexaploid bread wheat genome, triticum aestivum. GigaScience, 6(11). https://doi.org/10.1093/gigascience/gix097