Wheat production under drought stress conditions: physiological and biochemical responses and mitigation options

Автор: Noori Mohammad Safar

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.19, 2023 года.

Бесплатный доступ

Drought is a global problem, limiting crop production and quality, and it is more detrimental under climate change conditions. It decreases crop yield by affecting the key plant metabolic pathways. Drought triggers a wide variety of plant responses, ranging from cellular metabolism to changes in growth rates and crop yields. Wheat is one of the most important cereal crops and extensively cultivated in wide ranges of altitudes in Afghanistan. With an alarming population growth in the era of climatic change, there is a need for further crop improvement for sustainable production. Understanding the physiological and biochemical responses wheat to drought is essential for a holistic perception of resistance mechanisms to drought conditions. This review article has been divided into two parts, i.e., Physiological and biochemical responses of wheat to drought stress, and drought stress mitigation approaches. I+n the first part, physiological and biochemical responses of wheat to stress were discussed. Drought stress reduces relative water content of leaves, chlorophyll content, and membrane stability. It adversely affects photosynthesis by changing the inner structure of chloroplasts, mitochondria, and chlorophyll content and minerals. Drought stress induces generation of active oxygen species, and the production of antioxidant enzymes in response to water stress as an adaptive mechanism against oxidative damage. This review article elucidates the physiological and biochemical responses of wheat to drought stress conditions and provides drought mitigation options that could contribute in food security under changing climate.

Еще

Wheat, drought stress, antioxidant enzymes, photosynthesis, osmolytes

Короткий адрес: https://sciup.org/143180108

IDR: 143180108

Список литературы Wheat production under drought stress conditions: physiological and biochemical responses and mitigation options

  • Abdul-Sattar, Sher A., Ijaz M., Sami Ul-Allah, M., Mubshar Hussain S. R., Jabran K., Mumtaz Cheema A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLOS ONE. https://doi.org/10.1371/journal.pone.0232974.
  • Alaei, Y. (2011). The effect of amino acids on leaf chlorophyll content in bread wheat genotypes under drought stress conditions. Middle-East J Sci Res., 10:99-101.
  • Anjum, S.A, Xiao-yu Xie, Long-chang W., Farrukh Saleem M., Chen M. and Wang L. (2011a). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J.Agril. Res, Vol. 6(9): 2026-2032.
  • Anjum, S.A., Wang L.C., Farooq M., Khan I., Xue L.L. (2011b). Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defense system and yield in soybean under drought. J. Agron. Crop Sci., doi:10.1111/j.1439-037X.2010.00468.x.
  • Anjum, S.A., Wang, L.C., Farooq, M., Hussain, M., Xue, L.L., and Zou, C.M. (2011c). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 197, 177185. doi: 10.1111/j.1439-037X.2010.00459.x
  • Apel, K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55: 373-399.
  • Azooz, M.M., and Youssef M.M. (2010) Evaluation of heat shock and salicylic acid treatments as inducers of drought stress tolerance in Hassawi wheat. Am J Plant Physiol 5:56-70
  • Barber, S. A. (1995). Soil Nutrient Bioavailability: A Mechanistic Approach, 2nd Edn. New York, NY: Wiley.
  • Bilal, M., Iqbal, I., Rana, R.M., Shoaib, U.R., Rehman, Haidery, Q.A., Ahmad, F., Ijaz, A. & Umar, H.M.I. (2015), "A comprehensive review of effects of water stress and tolerance in wheat (Triticum aestivum L.)", Tropil Plant Res. 2(3): 271-275.
  • Bota, J., Flexas, J., and Medrano, H. (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 162, 671-681. doi: 10.1093/aob/mcn244.
  • Celik, O., Cimen A. (2012). The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk. J. Biol., 36:339 -356.
  • Chen, X., Min D., Yasir T.A., Hu Y.G. (2012). Field crops research evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). F. Crop. Res., 137:195-201. DOI: 10.5897/AJAR10.027
  • Demiral, T., and Turkan I. (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol., 161: 1089-1110.
  • Dubey, R.S., Pessarakli M. (2001). Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Pessarakli M, editor. Handbook of plant and crop physiology. Boca Raton (FL): CRC Press; p. 659678
  • Eivazi, A. (2012). Induction of drought tolerance with seed priming in wheat cultivars (Triticum aestivum L.). Acta Agric. Slov. 99, 21-29. doi: 10.2478/ V10014-012-0003-6
  • Fahad, S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., Ihsan M.Z., Alharby H., Wu C., Wang D. and Huang J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci., 8:1147. doi: 10.3389/fpls.2017.01147.
  • Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul, 75, 391-404. doi: 10.1007/s10725-014-0013-y
  • Farooq. M., Basra S, Wahid A. (2009a). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci., 2009; 195 (4):237-246.
  • Farooq, M., Aziz, T., Basra, S. M. A., Cheema, M. A., and Rehman, H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Agron. Crop Sci., 194, 161-168. doi: 10.1111/j.1439-037X.2008.00300.X
  • Farooq, M., Basra, S.M.A., and Wahid, A. (2006). Priming of fieldsown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul., 49, 285-294. doi: 10.1007/s10725-006- 9138-y
  • Farooq, M., Irfan, M., Aziz, T., Ahmad, I., and Cheema, S. A. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. Crop Sci, 199, 12-22. doi: 10.1111/j.1439-037X.2012.00521.X
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009a). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185-212. doi: 10.1051/agro:2008021
  • Farshadfar, E., Ghasempour H., Vaezi H. (2008) Molecular aspects of drought tolerance in bread wheat (T. aestivum). Pak. J. Biol. Sci., 11:118-122.
  • Flexas, J., Bota J., Loreto F., Cornic G., Sharkey T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol., 6: 1-11.
  • Fotovat, R., Valizadeh M., Toorchi M. (2007). Association between wateruse efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J. Food Agric. Environ., 5:225-227
  • Garg, B. K. (2003). Nutrient uptake and management under drought: nutrient-moisture interaction. Curr. Agric., 27, 1-8.
  • Gill, S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem., 48:909-930.
  • Gong, H., Zhu, X., Chen, K., Wang, S., and Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169, 313-321. doi: 10.1016/j.plantsci.2005.02.023
  • Hafez, E.M., Gharib H.S. (2016) Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. GUASNR Int J Plant Prod 10:579-596.
  • Hendriks, P.W., Kirkegaard J.A., Lilley J.M., Gregory P.J., Rebetzke G.J. (2016) A tillering inhibition gene influences root-shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments. J. Exp. Bot., 67:327-340.
  • Hernández, I., Cela J, Alegre L, Munné-Bosch S. (2012). Antioxidant defenses against drought stress. In: Plant responses to drought stress. Springer, Berlin, pp 231-258
  • Horvath, E., Pal M., Szalai G., Paldi E., Janda T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant., 51:480-487.
  • Hossain, A., Teixeira da Silva J.A., Lozovskaya M.V., Zvolinsky V.P. (2012). High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J. Biol. Sci., 19:473-487.
  • Huseynova, I.M., Rustamova S.M., Suleymanov S.Y., Aliyeva D.R., Mammadov A.C., Aliyev J.A. (2016). Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynth Res., 130:215-223
  • Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., and Cheema, M. A. (2008). Improving Drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci., 194, 193-199. doi: 10.1111/j.1439-037X.2008.00305.x.
  • Jain, M., Tiwary, S., and Gadre, R. (2010). Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant Soil Environ., 56, 263267.
  • Keyvan, S. (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Anim. Plant Sci., 8:1051-1060.
  • Kilic, H., Tacettin Y. (2010) The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum). Not Bot Horti Agrobot Cluj-Napoca 38:164170.
  • Lawlor, D. W., and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ, 25, 275-294. doi: 10.1046/j.0016-8025.2001.00814.x.
  • Lesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84-87. doi: 10.1038/nature16467.
  • Lichtfouse, A E. Goyal (eds.), Sustainable Agriculture Reviews, Sust. Agri. Rev., 16, DOI: 10.1007/978-3-319-16988-0_3
  • Lipiec, J., Doussan C., Nosalewicz A., Kondracka K. (2013). Effect of drought and heat stresses on plant growth and yield: a review. Int. Agrophys., 27:463477.
  • Liu, Y., Liang H., Lv X., Liu D., Wen X., Liao Y. (2016). Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol Biochem., 100:113-129
  • Lobell, D. B., Schlenker, W., and Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616-620. doi: 10.1126/science. 1204531
  • Loutfy, N., El-Tayeb M.A., Hassanen A.M., Moustafa M.F.M., Sakuma Y., Inouhe M. (2012). Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). J. Plant Res, 125:173-184
  • Ma, X. L., Wang, Y. J., Xie, S. L., Wang, C., and Wang, W. (2007). Glycinebetaine application ameliorates negative effects of drought stress in tobacco. Russ. J. Plant Physiol. 54, 472-479. doi:10.1134/S1021443707040061
  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. & Sohrabi, E. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci., 4: 580585.
  • Manickavelu, A., Kawaura, K., Oishi, K., Shin-I., T., Kohara, Y., Yahiaoui, N. (2012). Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum). DNA Res. 19, 165-177. doi: 10.1093/dnares/dss001
  • Manuchehri, R., and Salehi H. (2014). Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. South Afr. J. Bot., (9) 2: 83-88, 2014.
  • Mir, R. R., Zaman-Allah M., Sreenivasulu N., Trethowan R., Varshney R.K. (2012). Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet., 125: 625-645.
  • Moayedi, A.A., Nasrulhaq Boyce A., Shahar Barakbah S., Author C., Akbar Moayedi A., Nasrulhaq Boyce A., Shahar Barakbah S. (2010). The performance of durum and bread wheat genotypes associated with yield and yield component under different water deficit conditions. Aust. J. Basic. Appl. Sci., 4:106-113
  • Muhammad, H.C., Nazir, A.C., Qamaruddin, C., Sheikh, M.M., Sadaruddin, C. & Zaid, C. (2016). "Physiological characterization of six wheat genotypes for drought tolerance", Intl. J. Res. Granthaalayah, (4) 2:184-196
  • Mwadzingeni, L., Shimelis, H., Dube, E., Laing, M.D. & Tsilo, T.J. (2015). Breeding wheat for drought tolerance: Progress and technologies. J. Integ. Agri.
  • Nam, N.H., Subbaroa G.V., Chauhan Y.S., Johansen C. (1998). Importance of canopy attributes in determining dry matter accumulation of pigeon pea under contrasting moisture regimes. Crop Sci., 38: 955-961.
  • Nawaz, F., Ashraf M.Y., Ahmad R., Waraich E.A/, Shabbir R.N. (2014). Selenium (Se) regulates seedling growth in wheat under drought stress. Adv Chem., 2014:1-7
  • Nawaz, F, Shehzad MA, Majeed S. (2020). Role of mineral nutrition in improving drought and salinity tolerance in field crops. Singapore: Springer; 129147.
  • Nayyar, H., Walia D.P. (2003). Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol. Plant., 46: 275-279.
  • Nazarli, H., Faraji F. (2011). Response of proline, soluble sugars and antioxidant enzymes in wheat (Triticum aestivum L.) to different irrigation regimes in greenhouse condition. Cercet Agron in Mold 44:27-33.
  • Negisho, K. and Daksa J. (2018). Morphological, Physiological, Biochemical and Molecular Responses of Wheat vs Drought Stresses: A Review. J. of Natural Sci. Res. (8) 9.
  • Nezhadahmadi, A., Prodhan Z.H., Faruq G. (2013). Drought tolerance in wheat. Sci. World J., 610721
  • Nikolaeva, M.K., Maevskaya S.N., Shugaev A.G., Bukhov N.G. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ. J. Plant Physiol., 57:87-95
  • Nouri-Ganbalani, A., Nouri-Ganbalani G., Hassanpanah D. (2009). Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran J. Food Agric. Environ., 77:228-234.
  • Prasad, P.V.V., Pisipati S.R., Momcilovic I., Ristic Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci., 197:430-441
  • Qayyum, A., Razzaq A., Ahmad M., Jenks M.A. (2011). Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. Afr. J. Biotechnol., 10:14038-14045.
  • Rhodes, D. Samaras Y. (1994). Genetic control of osmoregulation in plants. In cellular and molecular physiology of cell volume regulation. Strange, K. Boca Raton: CRC Press, pp. 347-361.
  • Safar-Noori, M., Assaha D.V.M. and Saneoka H. (2018). Effect of Salicylic Acid and Potassium Application on Yield and Grain Nutritional Quality of Wheat under Drought Stress Condition. C.R.C., 46(3), pp. 558-568 (2018).
  • Schimel, J., Balser, T.C., and Wallenstein, M. (2007). Microbial stress response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394. doi: 10.1890/06-0219
  • Shao, H.B., Liang Z.S., Shao M.A., Sun Q. (2005). Dynamic changes of antioxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids Surf. Biointerfaces, 42:187-195.
  • Sharma, P., Dubey R.S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzyme in growing rice seedling. Plant Growth Regul, 46: 209-221
  • Sheikh, S. B., Hussain A., Hussain S. J., Wani O. A., Nabi S. Z, Niyaz A.D., Baloch F.S. and Sheikh M. (2022). Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. Biotec. Biotechnol. Equipment, (35)1. https://doi.org/10.1080/13102818.2021.2020161 .
  • Shewry, P.R. (2007) Improving the protein content and composition of cereal grain. J. Cereal Sci., 46:239250
  • Shigeoka, S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., Yoshimura K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 53: 1305-1319.
  • Siddique, M.R.B., Hamid A., Islam M.S. (2001). Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sin., 41: 35-39.
  • Simova-Stoilova, L., Vaseva I., Grigorova B., Demirevska K., Feller U. (2010). Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem., 48:200-206
  • Tefera, A., Mulugeta K., Tadesse K., and Getahun T. (2021). Morphological, Physiological, and Biochemical Characterization of Drought-Tolerant Wheat (Triticum spp.) Varieties. Int. J. Agron., Article ID 8811749. https://doi.org/10.1155/2021/8811749
  • Wang, H., Huang J., Li Y., Li C., Hou J., Liang W. (2016). Involvement of nitric oxide-mediated alternative pathway in tolerance of wheat to drought stress by optimizing photosynthesis. Plant Cell Rep, 35:2033-2044.
  • Wang, X., Vignjevic M., Jiang D., Jacobsen S., Wollenweber B. (2014) Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var, Vinjett. J. Exp. Bot., 65:6441-6456
  • Waraich, E.A., Ahmad R., Ashraf M.Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci., 5:764-777
  • Waraich, E.A., Ahmad R., Saifullah Ahmad S., Ahmad A. (2010). Impact of water and nutrient management on the nutritional quality of wheat. J. Plant Nutr., 33:640-653
  • Xu, Y, Xu Q., Huang B. (2015). Ascorbic acid mitigation of water stressinhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea Schreb.). Front. Plant Sci., 6:807
  • Yadav, R.S., Hash C.T., Bidinger F.R., Devos K.M., Howarth C.J. (2004). Genomic regions associated with grain yield and aspects of post flowering drought tolerance in pearl millet across environments and tester background. Euphytica, 136: 265-277.
  • Yu, T.F., Xu, Z.S., Guo, J.K., Wang, Y.X., Abernathy, B., Fu, J.D., Chen, X., Zhou, Y.B., Chen, M., Ye, X.G. & Ma, Y.Z. (2017). Improved drought tolerance in wheat plants over expressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Rep.
  • Zahoor, A., Waraich E.A., Akhtar S, Anjum S., Tanveer A., Mahboob W., Bin Abdul Hafeez O., Terence T., Labuschagne M., Rizwan M., (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40:80. https://doi.org/10.1007/s11738-018-2651-6.
Еще
Статья обзорная