Wide-pore cryogels prepared using the combination of liquid-liquid phase separation and cryotropic gel-formation processes

Автор: Lozinskiy Vladimir Iosifovich, Antonov Yuriy Alekseevich, Damshkaln Liliya Grigoryevna, Ezernitskaya Mariam Grigoryevna, Glotova Yuliya Konstantinovna

Журнал: НБИ технологии @nbi-technologies

Рубрика: Технико-технологические инновации

Статья в выпуске: 3 (18), 2015 года.

Бесплатный доступ

Novel, previously unknown, wide pore poly(vinyl alcohol) cryogels (PVACGs) have been prepared through the cryotropic gelation approach, when water-PVA-gum Arabic (GuAr) ternary liquid systems were used as feeds. The following set of conditions necessary for obtaining wide-porous, permeable for a water flow, and, simultaneously, mechanically strong enough PVACGs was established: the total concentration of gelling component - PVA (MW of 86 kDa) and non-gelling polymer - GuAr (MW of ~650 kDa) should exceed ~14 wt. %, GuAr/PVA ratio should be near 1 : 1 (w/w), and the feed’s pH should be within the range of ~5-11. The phase diagrams for the water-PVA-GuAr ternary liquid systems at pH 5.3 and 10.0 have demonstrated that such “optimum” compositions are in the vicinity of the rectilinear diameters of the respective diagrams, and that the limit of GuAr solubility in the PVA-rich phase is small. In such cases this GuAr fraction strongly binds with PVA, especially under alkaline conditions, within the forming gel phase of heterophase PVACG. The light microscopy studies revealed the presence of at least three distinct kinds of pores in these cryogels. Firstly, there are interconnected channel-like gross pores with cross-section of 100-200 µm which are the replicas of continuous GuAr-rich phase in the two-phase polymeric systems appearing due to the liquid-liquid phase separation in the ternary water-PVA-GuAr system. The second type is represented by isolated roundish large pores ca. 10-70 µm in diameter being the replicas of GuAr-rich phase dispersed as liquid droplets in the PVA-rich phase. And the third type is represented by the smaller rounded pores ~1-5 µm in diameter being the replicas of ice polycrystals. Such sophisticated “poly-porous” morphology of the studied PVA cryogels is their unique feature distinguishing them from other known PVA cryogels.

Еще

Poly(vinyl alcohol), gum arabic, liquid-liquid phase separation, freezingthawing, wide pore cryogels

Короткий адрес: https://sciup.org/14968399

IDR: 14968399   |   DOI: 10.15688/jvolsu10.2015.3.3

Список литературы Wide-pore cryogels prepared using the combination of liquid-liquid phase separation and cryotropic gel-formation processes

  • Albertsson P.A. Partition of Cell Particles and Macromolecules. 2nd ed. New Yor k, Wiley-Interscience, 1971. 346 р.
  • Alves M.H., Jensen B.E.B., Smith A.A.A., Zelikin A.N. Poly(vinyl alcohol) Physical Hydrogels: New Vista on a Long Serving Biomaterial. Macromol. Biosci., 2011, no. 11, рр. 1293-1313.
  • Antonоv Yu. A., Van Puyvelde P., Moldenaers P. Flow-Induced Phase Behaviour and Structure Development in Aqueous Emulsion of Associative Biopolymers. Food Hydrocolloids, 2012, vol. 27, pp. 264-268.
  • Antonov Yu.A., Lozinskaya N. V., Grinberg V. Ya., Tolstoguzov V. B. Phase Equilibria in Water-Protein-Polysaccharide System. Colloid and Polymer Sci., 1979, no. 257, pp. 1159-1171.
  • Antonov Yu.A., Pletenko M.G., Tolstoguzov V.B. Termodinamich eskaya sovmestimost polisakharidov v vodnykh sredakh . Vysokomolekulyarnye soedineniya, A, 1987, no. 29, pp. 2482-2486.
  • Arvidsson P., Plieva F.M., Savina I.N., Lozinsky V.I., Fexby S., Bulow L., Galaev I.Yu., Mattiasson B. Cryogels on the Basis of Natural and Synthetic Polymers: Preparation, Properties and Areas of Implementation. J. Chromatogr., 2002, vol. 977, рр. 27-38.
  • Bajpai A., Saini R. Designing of Macroporous Biocompatible Cryogels of PVA-Haemoglobin and Their Water Sorption Study. J. Mater. Sci., Mater. Med., 2009, vol. 20, pp. 2063-2074.
  • Bajpai A., Saini R. Preparation and Characterization of Spongy Cryogels of Poly(vinyl alcohol)Casein System: Water Sorption and Blood Compatibility Study. Polym. Int., 2005, vol. 54, pp. 796-806. DOI: DOI: 10.1002/pi.1773
  • Bakhr acheva Yu.S. Fracture Toughness P r ed i ct i on by M ea n s of Inde n t at i on Tes t. International Journal for Computational Civil and Structural Engineering, 2013, vol. 9, no. 3, pp. 21-24.
  • Baron A.A., Gevlich D.S., Bakhracheva Yu.S. Specific Plastic Strain Energy as a Measure of the Cracking Resistance of Structural Materials. Russian metallurgy (Metally), 2002, no. 6, pp. 587-592.
  • Cascone M.G., Barbani N., Maltini S., Lazzeri L. Gellan/poly(vinyl alcohol) Hydrogels: Characterization and Evaluation as Delivery Systems. Polym. Int., 2001, vol. 50, pp. 1241-1246.
  • Cascone M.G., Maltini S., Barbani N., Laus M. Effect of Chitosan and Dextran on the Properties of Poly(vinyl alcohol) Hydrogels. J. Mater. Sci., Mater. Med., 1999, vol. 10, pp. 431-435.
  • Choi J., Kung H.J., Macias C.E., Muratoglu O. K. Effect sof Processing Parametersin Thermally Induced Phase Separation Technique on Porous Architecture of Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res., Part B, Appl. Biomater., 2012, vol. 100, pp. 524-532.
  • Cui S.W., Phillips G.O., Blackwell B., Nikiforuk J. Quantication of the Degree of Blockiness in Pectins Using 1H NMR Spectroscopy and Chemometrics. Food Hydrocolloids, 2007, vol. 21, pp. 347-352.
  • Dai L.X., Ukai K., Shaheen S.M., Yamaura K. Gelation of a New Hydrogel System of Atactic-Poly(vinyl alcohol)/NaCI/H2O. Polym. Int., 2002, vol. 51, pp. 715-720.
  • Edgren D., Zhu P.C., Struble E., Frame R., Zhang Y. A Novel Semi-Biobased Copolyester Containing Poly(trimethylene-co-hexamethylene terephthalate) and Poly(lactic acid) Segments. J. Macromol. Sci., Part A. Pure Appl. Chem., 2010, vol. 47, pp. 545-551.
  • Elbert D.L. Self-Assembled Composite Matrix in a Hierarchical 3D Scaffold for Bone Tissue Engineering. Acta Biomaterialia, 2011, vol. 7, pp. 31-56.
  • Gutiérrez M.C., Aranaz I., Ferrer M.L., Del Mon to F. Macroporo us Polymers: Pro duction, Properties and Biological/Biomedical Applications. Boca Raton, CRC Press, 2010, pp. 83-115.
  • Hassan C.M., Ward J.H., Peppas N.A. Modeling of Crystal Dissolution of Poly(vinyl alcohol) Gels Pr oduced by Freezin g/Th awing Processes. Polymer, 2000, vol. 41, pp. 6729-6739.
  • Hassan Ch.M., Peppas N.A. Substituted and Ring-Substituted Water Soluble Self-Aciddoped Con ducting Polyanilines and Their Blends With Poly(Vin yl Alcoh ol): Str uctur e, Pr operties, an d Applications. Adv. Polym. Sci., 2000, vol. 153, pp. 37-65.
  • Hatakeyama T., Yamaguchi A., Hatakeyama H. Effect of Thermal Hysteresis on Structural Change of Water Restrained in Poly(Vinyl Alcohol) Pseudo-Gel. Eur. Polym. J., 1987, vol. 23, pp. 361-365.
  • Hoskins P. R. Simulation and Validation of Arterial Ultrasound Imaging and Blood Flow. Ultrasound in Med. & Biol., 2008, vol. 34, pp. 693-717.
  • Hsu C.C., Prausnitz J.M. Thermodynamics of Polymer Compatibility in Ternary Systems. Macromolecules, 1974, no. 7, рр. 320-324.
  • Ibrahim S.M., Ibrahim M.S., Farag S.A., Ragab A.A. The Mechanical Properties of Sago Starch-Filled Linear Low Density. Polym. Plast. Technol. Eng., 2008, vol. 47, pp. 40-46.
  • Jagur-Grodzinski J. Polymers for Tissue Engineering, Medical Devices, and Regenerative Medicine. Concise General Review of Recent Studies. Polym. Adv. Technol., 2006, vol. 17, no. 6, pp. 395-418.
  • Jiang H.J., Campbell G., Boughner D.R., Wan W.K., Quantz M. Design and Manufacture of P ol yvin yl Al coh ol (PVA) Cr yog el Tr i -Leaflet Heart Valve Prosthesis. Med. Eng. & Phys., 2004, vol. 26, no. 4, pp. 269-277.
  • Kobayashi M., Ando I., Ishii T., Amiya S. Characterization of Jacalin, the Human IgA and IgD Binding Lectin From Jackfruit. J. Mol. Struct., 1998, vol. 440, pp. 155-164.
  • Koningsveld R., Staver man A.J. Phase Equilibria in Polymer Systems. J. Polym. Sci., 1968, vol. 6, pp. 305-323.
  • Lazzeri L. Carbohydrate-Derived Polyamides. Trends in Polym. Sci., 1996, vol. 4, pp. 249-252.
  • Lee H., Medsire E., Cohen R.E., Rubner M.F. Strategies for Hydrogen Bonding Based on Layer-by-Layer Assembly of Poly(Vinyl Alcohol) With Weak Polyacids. Macromolecules, 2012, vol. 45, pp. 347-355.
  • Lozinskiy V.I., Damshkaln L.G., Bloch K.O., Vardi P., Grinberg N.V., Burova T.V., Grinberg V.Ya. Application of Poly(vinyl alcohol) Cryogels in Biotechnology. J. Appl. Polym. Sci., 2008, vol. 108, pp. 3046-3062.
  • Lozinskiy V.I., Damshkaln L.G., Kurochkin I.N., Kurochkin I.I. The Study of Cryostructuration of Polymer Systems. Colloid J., 2008, vol. 70, pp. 189-198.
  • Lozinskiy V.I., Damshkaln L.G., Kurochkin I.N., Kurochkin I.I. The Influence of Surfactants on the Properties and Structure of Gas-Filled (Foamed) Poly(vinyl alcohol) Cryogels. Colloid J., 2005, vol. 67, pp. 589-601
  • Lozinskiy V. I., Damshkaln L. G., Shaskolskiy B.L., Babushkina T.A., Kurochkin I.N., Kurochkin I.I. Poly(Vinyl Alcohol) Composite Cryogels Filled With Microparticles of Polymer Dispersion. Colloid J., 2007, vol. 69, pp. 747-764.
  • Lozinskiy V.I., Domotenko L.V., Zubov A.L., Simenel I.A. The Study of Ciyostructuration of Polymer System. J. Appl. Polym. Sci., 1996, vol. 61, pp. 1991-1998.
  • Lozinskiy V.I., Galaev I.Y., Plieva F.M., Savina I.N., Jungvid H., Mattiasson B. Polymeric Cryogels as Promising Materials of Biotechnological Interest. Trends in Biotechnology, 2003, vol. 21, pp. 445-451.
  • Lozinskiy V.I., Mor ozova S.A., Vainerman E.S., Titova E.F., Shtilman M.I., Belavtseva E.M., Rogozhin S.V. Characteristic Features of the Formation of Crosslinked Poly(acryl amide) Cryogels Under Different Thermal Conditions. Acta Polymerica, 1989, vol. 40, pp. 8-15.
  • Lozinskiy V.I., Plieva F.M. Poly(vinyl alcohol) Cryogels Employed as Matrices for Cell Immobilization. Enzyme Microb. Technol., 1998, vol. 23, pp. 227-242.
  • Lozinskiy V.I., Plieva F.M., Galaev I.Yu., Mattiasson B. Poly(vinyl alcohol) Cryogels Employed as Matrices for Cell Immobilization. Bioseparation, 2001, vol. 10, pp. 163-188.
  • Lozinskiy V.I. Polymeric Cryogels as a New Family of Macr oporous and Super macr oporous Materials For Biotechnological Purposes. Russ. Chem. Bull., 2008, vol. 57, pp. 1015-1032.
  • Lozin skiy V.I. Cr yotr op ic Gelati on of Poly(vinyl alcohol) Solutions. Russian Chem. Revs., 1998, vol. 67, pp. 573-586.
  • Lozinskiy V.I. Cryogels on the Basis of Na tur al. an d S yn th etic P olymer s: Pr epa r a tion, Properties and Application. Russian Chem. Revs., 2002, vol. 71, pp. 489-511.
  • Lozinskiy V.I., Sakhno N.G., Damshkaln L.G., Bakeeva I.V., Zubov V.P., Kurochkin I.N., Kurochkin I.I. Physicochemical Properties of Poly(vinyl alcohol) Cryogels and Specific Features of Their Macroporous Morphology. Colloid J., 2011, vol. 73, pp. 225-234.
  • Lozinskiy V.I., Solodova E.V., Zubov A.L., Simenel I.A. Structural Changes Accompanying the Isothermal Gelation of Polyacrylonitrile Solutions. J. Appl. Polym. Sci., 1995, vol. 58, pp. 171-178.
  • Lozinskiy V. I., Vainerman E. S., Domotenko L.V., Blumenfeld A.L., Rogov V.V., Barkovskaya E.N., Fedin E.I., Rogozhin S. V. Characteristic Features of the Freezing of Concentrated Aqueous Poly(vinyl alcohol) Solutions. Colloid J. USSR, 1989, vol. 51, pp. 592-596..
  • Lozin skiy V.I., Vainerman E.S., Domotenko L.V., Mamtsis A.M., Titova E.F., Belavtseva E.M., Rogozhin S.V. Poly(vinyl alcohol) Cryogels Employed as Matrices for Cell Immobilization. Colloid Polym. Sci., 1986, vol. 264, pp. 19-24.
  • Lozinskiy V.I., Vakula A.V., Zubov A.L. Swelling Behavior of Poly(vinyl alcohol) Cryogels. Soviet Biotechnology, 1992, no. 4, pp. 1-11.
  • Lozin skiy V.I., Damsh kaln L.G. Study of Cryostructuration of Polymer Systems. Foamed Poly(vinyl alcohol) Cryogels. J. Appl. Polym. Sci., 2001, vol. 82, pp. 1609-1619.
  • Markvicheva E.A., Lozinskiy V.I., Plieva F.M., Kochetkov K.A., Rumsh L.D., Zubov V.P., Maity J., Kumar R., Parmar V., Belokon Yu. N. Gel -Immobilized Enzymes as Promising Biocatalysts for Enantioselective Hydrolysis in Water/Organic Media. Pure and Appl. Chem., 2005, vol. 77, pp. 227-236.
  • Mathews D.T., Birney Y.A., Cahill P.A., McGuinness C.B. Mechanical and Morphological Ch ar acteristics of Poly(vin yl alcoh ol)/Ch itosan Hydrogels. J. Appl. Polym. Sci., 2008, vol. 109, pp. 1129-1137.
  • Moayedi1 H., Asadi A., Moayedi F., Huat B.K. Zeta Potential of Tropical Soil in Presence of Polyvinyl Alcohol. Int. J. Electrochem. Sci., 2011, no. 6, pp. 1294-1306.
  • Nambu M. Rubber-Like Poly(vinyl alcohol) Gel. Kobunshi Ronbunshu, 1990, vol. 47, pp. 695-703. (in Japanese).
  • Nikonorov V.V., Ivanov R.V., Kildeeva N.R., Bulatnikova L.N., Lozinskiy V.I. Cryotropic Gelation of Ovalbumin Solutions. Polymer Sci., 2010, vol. 52, pp. 828-834.
  • Nikonorov V.V., Ivanov R.V., Kildeeva N.R., Lozinskiy V.I. Effect of Polymer-Precursor Molecular MASS on the Formation and Properties of Covalently Crosslinked Chitosan Cryogels. Polymer Sci., 2011, vol. 53, pp. 1150-1158.
  • Nugent M.J.D., Higginbotham C.L. Preparation of a Novel Freeze Thawed Poly(vinyl alcohol) Composite Hydrogel for Drug Delivery Application. Eur. J. Pharm. Biopharm., 2007, vol. 67, pp. 377-386.
  • Peppa s N.A., S tauffer S h.R. Rein for -ced Uncrosslinked Poly(vinyl alcohol) Gels Produced by Cyclic Freezing-Thawing Processes: A Short Review. J. Contr. Release, 1991, vol. 16, pp. 305-310.
  • Plieva F. M., Galaev I.Yu., Noppe W., Mattiasson B. Cryogel Applications in Microbiology. Trends in Microbiol., 2008, vol. 16, pp. 543-551.
  • Plieva F.M., Karlsson M., Anguilar M.-R., Gomez D., Mikhalovsky S., Galaev I.Y. Pore Structure in Supermacroporous Polyacrylamide-Based Cryogels. Soft Matter, 2005, no. 1, pp. 303-309.
  • Polyakov V.I., Grinberg V.Ya., Tolstoguzov V.B. Application of Phase Diagram of Water-Casein-Soybean Globulin. Polym. Bull., 1980, no. 2, pp. 757-760.
  • Ricciardi R., Aur iemma F., Rosa C.D., Laupretre F. Structural Changes Induced by Thermal Treatments on Emptied and Filled Clathrates of Syndiotactic Polystyrene. Macromolecules, 2004, vol. 37, pp. 1921-1927.
  • Ricciardi R., Gaillet C., Ducouret G., Lafuma F., Laupretre F. Poly(vinyl alcohol) (PVA) Is a Water-Soluble, Biocompatible and Biodegradable Polymer, Which Has Been Widely Applied in Biomedical Fields. Polymer, 2003, vol. 44, pp. 3375-3380.
  • Savina I.N., Lozinskiy V.I. Cryogels Filled With Dispersed Particles Containing Ionogenic Groups. Colloid J., 2004, vol. 66, pp. 343-349.
  • Sergeev G.B., Batyuk V.A. Reactions in Frozen Multicomponent Systems. Russ. Chem. Rev., 1976, vol. 45, pp. 391-423.
  • Sheldon R.A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal., 2007, vol. 349, pp. 1289-1307.
  • Shoichet M.S. Polymer Scaffolds for Biomaterials Applications Molly. Macromolecules, 2010, vol. 43, pp. 581-591.
  • Suri A., Campos R., Rackus D.R., Spiller N.J.S., Richardson C., Palsson L.O, Kataky R. Liposome-Doped Hydrogel for Implantable Tissue. Soft Matter, 2011, no. 7, pp. 7071-7077.
  • Surry K.J.M., Austin H.J.B., Fenster A., Peters T.M. Poly(vinyl alcohol) Cryogel Phantoms for Use in Ultrasound and MR Imaging. Phys. Med. Biol., 2004, vol. 49, pp. 5529-5546.
  • Suzuki M., Hirasa O. An Approach to Articial Musc l e Us i n g P ol ym er G el s F or m ed by Microphase Separation. Adv. Polym. Sci., 1993, vol. 110, pp. 241-261.
  • Trieu H.H., Qutubuddin S. Poly(vin yl alcohol) Hydrogels. Colloid Polym. Sci., 1994, vol. 272, no. 8, pp. 301-309.
  • Trieu H. Qutubuddin S. Poly(vinyl alcohol) Hydrogels: Effects of Processing Parameters on Structure and Properties. Polymer, 1995, vol. 36, pp. 2531-2539.
  • Tsunemoto N., Suzuki M. Friction Between Polymer Networks of Gelsan d Solven t. Polymer Gels and Networks, 1994, no. 2, pp. 247-255.
  • Valentín J.L., Lуpez D., Hernández R., Mijangos C., Saalwächter K. Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton Low-Field NMR Spectroscopy. Macromolecules, 2009, vol. 42, pp. 263-272.
  • Varfolomeev S.D., Rainina E.I., Lozinskiy V.I. Cryoimmobilized enzymes and cells in organic synthesis. Pure & Appl. Chem., 1992, vol. 64, pp. 1193-1196.
  • Wan W.K., Campbell G., Zhang Z.F., Hui A.J., Boughner D.R. Osteogenic Differentiation of Mouse Adipose-Derived Adult Stromal Cells Requires Retinoic Acid and Bone Morphogenetic. J. Biomed. Mater. Res., 2002, vol. 63, pp. 854-861.
  • Watase M., Nishinari K., Nambu M. Anomalous Increase of the Elastic Modulus of Frozen Poly (Vinyl Alcohol) gels. Cryo-Letters, 1983, no. 4, pp. 197-200.
  • Willcox P.J., Howie D.W., Schimdt-Rohr K., Hoagland D.A., Gido S.P., Pudjijanto S., Kleiner L.W., Venkatraman S. Microstructure of Poly(vinyl alcohol) Hydrogels Produced by Freeze/Thaw Cycling. J. Polym. Sci., Polym. Phys., 1999, vol. 37, pp. 3438-3454.
  • Williams P.A., Phillips G.O. Handbook of Hydrocolloids. Cambridge, Woodhead Publ. Ltd., 2000. 168 p.
  • Yamaura K., Tanigami T., Hayash i N., Kosuda N., Okuda S., Takemura Y., Itoh M., Matsuzawa S. Preparation of High Modulus Poly(vinyl alcohol) by Drawing. J. Appl. Polym. Sci., 1990, vol. 40, pp. 905-916.
  • Yao K., Shen S., Yun J., Wang L., He X., Yu X. Preparation of Polyacrylamide-Based Supermacroporous Monolithic Cryogel Beds Under Freezing-Temperature Variation Conditions. Chem. Eng. Sci., 2006, vol. 61, pp. 6701-6708.
  • Yokoyama F., Masada I., Shimamura K., Ikawa T., Monobe K. Morphology and Structure of Highly Elastic Poly(Vinyl Alcohol) Hydrogel Prepared by Repeated Freezing and Melting. Colloid Polym. Sci., 1986, vol. 264, pp. 595-601.
  • Zeman L., Patterson D. Effect of the Solvent on Polymer Incompatibility in Solution. Macromolecules, 1972, no. 4, pp. 513-516.
Еще
Статья научная