Yarn-level modelling of woven and unidirectional thermoplastic composite materials under ballistic impact

Бесплатный доступ

Composite materials made of high-strength fibres (for example, aramid or UHMWPE) are extensively used in such protective structures as bulletproof vests, helmets, etc. Many researchers have carried out numerical simulations of ballistic impact on composite laminates applying continuum, multiscale and mesoscale approaches. The continuum approach requires a little computational time but cannot catch all features of composite panel or fabric plies behaviour during high-velocity impact. Thus, using the mesoscale and multiscale models has recently been increased. In this paper, mesoscale approach was used to simulate a 6.35 mm steel ball impact on two types of hot-pressed thermoplastic composites with LS-DYNA finite-element code. The first type of the composite panel is made of aramid fabric KV110P (plane weave structure) with LDPE matrix. The second one was Dyneema® HB80 UD laminate. The proposed models of the real-sized panels were based on the combination of shell (for yarns) and solid (for resin) elements with common nodes to reduce an overall number of contacts and CPU time. The yarn-level modelling allowed using simple material models and fracture criteria. The models reflect the main failure modes in the real panels including the fracture of fibres, delamination, fabric/matrix debonding, yarns pull-out, etc. The experimentally obtained ballistic curves were used to validate results of the numerical simulations.

Еще

Ls-dyna, composite material, thermoplastic matrix, protective structure, high-velocity impact, fea, mesoscale approach, ballistic limit

Короткий адрес: https://sciup.org/146211617

IDR: 146211617   |   DOI: 10.15593/perm.mech/2016.3.07

Список литературы Yarn-level modelling of woven and unidirectional thermoplastic composite materials under ballistic impact

  • Cheeseman B.A., Bogetti T.A. Ballistic impact into fabric and compliant composite laminates. Composite Structures. 2003, vol. 61, pp. 161-173 DOI: 10.1016/S0263-8223(03)00029-1
  • Kharchenko E.F., Ermolenko A.F. Composite, textile and combined armor materials. Moscow: Publ. of TsNIISM, 2014, 332 p.
  • Grigorian V.A., Kobylkin I.F., Mirinin V.M., Chistyakov E.N. Materialy i zashchitnye struktury dlya lokal'nogo i individual'nogo bronirovaniya. Moscow: RadioSoft, 2008, 406 p.
  • Bhatnagar A. Lightweight ballistic composites -military and law-enforcement applications. Cambridge: Woodhead Publishing Ltd., 2006, 482 p.
  • Abrate S. Impact Engineering of Composite Structures. 2011, Springer. 403 p DOI: 10.1007/978-3-7091-0523-8
  • Krishnan K., Sockalingam S., Bansal S., Rajan S.D. Numerical simulation of ceramic composite armor subjected to ballistic impact. Composites: Part B. 2010, vol. 41, pp. 583-593 DOI: 10.1016/j.compositesb.2010.10.001
  • Bürger D., Alfredo Rocha de Faria, Sérgio F.M. de Almeida, Francisco C.L. de Melo, Maurício V. Donadon. Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours. International Journal of Impact Engineering. 2012, vol. 43, pp. 63-77 DOI: 10.1016/j.ijimpeng.2011.12.001
  • Tan P. Numerical simulation of the ballistic protection performance of a laminated armor system with pre-existing debonding/delamination. Composites: Part B. 2014, vol. 59, pp. 50-59 DOI: 10.1016/j.compositesb.2013.10.080
  • Tasdemirci A., Tunusoglu G., Güden M. The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study. International Journal of Impact Engineering, 2012, vol. 44, pp. 1-9 DOI: 10.1016/j.ijimpeng.2011.12.005
  • Iannucci L., Pope D. High velocity impact and armour design. eXPRESS. Polym Lett, 2011, vol. 5(3), рр. 262-272 DOI: 10.3144/expresspolymlett.2011.26
  • Soykasap O., Colakoglu M. Ballistic performance of a Kevlar-29 woven fiber composite under varied temperatures. Mechanics of Composite Materials. 2010, vol. 46 (1), pp. 35-42 DOI: 10.1007/s11029-010-9124-3
  • Dimitrienko Yu.I., Belenovskaya Yu.V., Aniskovich V.A. Numerical simulation of shock-wave deformation of flexible armored composite materials. Science and Education. 2013, vol. 12, pp. 471-490 DOI: 10.7463/1213.0665297
  • Grujicic M, Pandurangan B., Koudela K.L., Cheeseman B. A computational analysis of the ballistic performance of light-weight hybrid composite armors. Applied Surface Science. 2006, vol. 253, pp. 730-745 DOI: 10.1016/j.apsusc.2006.01.016
  • Nguyen L.H., Lässig T.R, Ryan S., Riedel W., Mouritz A.P., Orifici A.C. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact. Composites: Part A, 2016, vol. 84, pp. 224-235 DOI: 10.1016/j.compositesa.2016.01.014
  • Lässig T., Nguyen L., May M., Riedel W., Heisserer U., H. van der Werff, Hiermaier S. Non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations. International Journal of Impact Engineering. 2015, vol. 75, pp. 110-122 DOI: 10.1016/j.ijimpeng.2014.07.004
  • Bandaru A.K., Chavan V.V., Ahmad S., Alagirusamy R., Bhatnagar N. Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. International Journal of Impact Engine ering, 2016, vol. 89, pp. 1-13 DOI: 10.1016/j.ijimpeng.2015.10.014
  • Segala D.B., Cavallaro P.V. Numerical investigation of energy absorption mechanisms in unidirectional composites subjected to dynamic loading events. Computational Materials Science, 2014, vol. 81, pp. 303-312 DOI: 10.1016/j.commatsci.2013.08.039
  • Grujicic M., Arakere G., He T., Bell W.C., Cheeseman B.A., Yen C.-F., Scott B. A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites. Materials Science and Engineering: A. 2008, vol. 498 (1-2), pp. 231-241 DOI: 10.1016/j.msea.2008.07.056
  • Nilakantan G. Filament-level modeling of Kevlar KM2yarns for ballistic impact studies. Composite Structures. 2013, vol. 104, pp. 1-13 DOI: 10.1016/j.compstruct.2013.04.001
  • Tan V.B.C., Ching T.W. Computational simulation of fabric armour subjected to ballistic impacts. International Journal of Impact Engineering. 2006, vol. 32, pp. 1737-1751 DOI: 10.1016/j.ijimpeng.2005.05.006
  • Chocron S., Figueroa E., King N., Kirchdoerfer T., Nicholls A.E., Sagebiel E., Weiss C., Freitas C.J. Modeling and validation of full fabric targets under ballistic impact. Composites Science and Technology. 2010, vol.70, pp. 2012-2022 DOI: 10.1016/j.compscitech.2010.07.025
  • Nilakantan G., Gillespie Jr. J.W. Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects. Composite Structures. 2012, vol. 94, pp. 3624-3634 DOI: 10.1016/j.compstruct.2012.05.030
  • Dolganina N.Yu., Sapozhnikov S.B. Study of the influence of type weave for strength of the textile armor panel at the local impact. Bulletin of the South Ural State University Series “Mechanical Engineering Industry”. 2013, vol. 13 (2), pp. 95-104.
  • Gopinath G., Zheng J.Q., Batra R.C. Effect of matrix on ballistic performance of soft body armor. Composite Structures. 2012, vol. 94, pp. 2690-2696 DOI: 10.1016/j.compstruct.2012.03.038
  • Bresciani L.M., Manes A., Ruggiero A., Iannitti G., Giglio M. Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: Macro-homogeneous and Meso-heterogeneous approaches. Composites Part B. 2016, vol. 88, pp. 114-130 DOI: 10.1016/j.compositesb.2015.10.039
  • Gama B.A., Gillespie Jr. J.W. Finite element modeling of impact, damage evolution and penetration of thick-section composites. International Journal of Impact Engineering. 2011, vol. 38, pp. 181-197 DOI: 10.1016/j.ijimpeng.2010.11.001
  • Chocron S., Nicholls A.E., Brill A., Malka A., Namir T., Havazelet D., H. van der Werff, Heisserer U., Walker J.D. Modeling unidirectional composites by bundling fibers into strips with experimental determination of shear and compression properties at high pressures. Composites Science and Technology. 2014, vol. 101, pp. 32-40 DOI: 10.1016/j.compscitech.2014.06.016
  • Bunsell A.R. Handbook of Tensile Properties of Textile and Technical Fibres. Cambridge: Woodhead Publishing Ltd, 2009. 696 p.
  • Chocron S., King N., Bigger R., Walker J.D., Heisserer U., H. van der Werff. Impacts and waves in Dyneema® HB80 strips and laminates. Journal of Applied Mechanics. 2013, vol. 80 (3), pp. 472-481 DOI: 10.1115/1.4023349
  • http://www.aramid.net/products/kv110p
  • GOST R 50744-95. Armor Clothes. Classification and general technical requirements. Moscow: State Standartization Committe of Russian Federation; September 2013. p. 11.
  • Sapozhnikov S.B., Kudryavtsev O.A., Zhikharev M.V. Fragment ballistic performance of homogenous and hybrid thermoplastic composites. International Journal of Impact Engineering, 2015, vol. 81, pp. 8-16 DOI: 10.1016/j.ijimpeng.2015.03.004
  • Sapozhnikov S.B., Kudryavtsev O.A. Compact accelerator for ballistic testing. Bulletin of the South Ural State University Series “Mechanical Engineering Industry”. 2012, vol. 20 (33), pp. 139-143.
  • Lambert J.P., Jonas G.H. Towards standardization in terminal ballistics testing: velocity representation. BRL Report No. 1852. Aberdeen Proving Ground, MD: U.S. Army Ballistic Research Laboratories; 1976. p. 51.
  • http://supercomputer.susu.ru/en/computers/tornado/
  • Sapozhnikov S., Kudryavtsev O. Modeling of thermoplastic composites used in protective structures. Mechanics of Composite Materials. 2015, vol. 51(4), pp. 419-426 DOI: 10.1007/s11029-015-9513-8
  • Dolganina N.Yu., Sapozhnikov S.B. Design of new constructions of textile armor panel using supercomputing. Bulletin of the South Ural State University Series “Mechanical Engineering Industry”. 2011, vol. 254 (37), pp. 71-81.
  • Utomo B.D. High-Speed Impact Modeling and Testing of Dyneema Composite, PhD thesis, Delft (2011).
  • Chen X. Advanced Fibrous Composite Materials for Ballistic Protection, 1st Edition. Cambridge: Woodhead Publishing Ltd, 2016. 548 p.
  • Tan V.B.C., Zeng X.S., Shim V.P.W. Characterization and constitutive modeling of aramid fibers at high strain rates. International Journal of Impact Engineering. 2008, vol. 35, pp. 1303-1313 DOI: 10.1016/j.ijimpeng.2007.07.010
  • Greenhalgh E.S., Bloodworth V.M., Iannucci L., Pope D. Fractographic observations on Dyneema® composites under ballistic impact. Composites: Part A. 2013, vol. 44, pp. 51-62 DOI: 10.1016/j.compositesa.2012.08.012
Еще
Статья научная