Buckling problem of composite thin-walled structures with properties dependent on loading types

Бесплатный доступ

Experimental studies of deformation of laminated composite materials often show a complex dependence of stiffness and strength characteristics on the type of loading. The most obvious examples are the difference of elastic moduli in tension and compression, nonlinear shear diagrams. It is possible to take into account such effects in applications only with the use of nonlinear elasticity models. Such models should not contradict fundamental physical principles and, in addition, should not require too complex experiments for validation. In this paper, we consider and numerically implement a model of nonlinear elasticity based on the use of the triaxiality parameter to describe the type of the material stress state. For a numerical implementation, the finite element modelling software Abaqus with user-defined subroutines was used. As a demonstration example, the applied problem of compression of a thin-walled composite cylindrical shell supported by stiffeners is considered. During loading, the shell exhibits an unstable behavior and stress state in its various areas can change drastically. For example, a change from the prevailing tension to compression and vice versa. In this case, damage to the shell material is not observed until a complete structure failure due to the loss of stability of stiffeners, which allows considering only the elastic model for this problem. The use of linear elasticity theory to model such a critical behavior of the structure leads to inaccurate results even at the initial stage of loading, while the proposed model shows a good consistency of the loading diagram, as well as the shape and magnitude of the shell deflections with the experiment.

Еще

Laminated composites, nonlinear elasticity, thin-walled structures, buckling, stress state, material model, deformation characteristics, fracture, finite element modelling, loading diagram

Короткий адрес: https://sciup.org/146281940

IDR: 146281940   |   DOI: 10.15593/perm.mech/2019.3.11

Статья научная