Protection of personal information in chats with neural networks: analysis of problems and methods of protection when storing user information
Автор: Martynov D.V., Chernikov V.S.
Журнал: Теория и практика современной науки @modern-j
Рубрика: Математика, информатика и инженерия
Статья в выпуске: 2 (104), 2024 года.
Бесплатный доступ
This article analyzes the vulnerabilities associated with storing confidential information in chats with neural networks and discusses possible methods for protecting user data. The analysis provides examples of potential information leakage scenarios. The possibilities of deleting information from chats with neural networks are also being considered. The results of the analysis highlight the importance of further research into data security in such chats and the need to take effective measures to ensure the confidentiality of information.
Neural networks, deep learning, data confidentiality, protection of personal information, vulnerabilities of neural networks, text information processing, security in chatbots, social engineering
Короткий адрес: https://sciup.org/140304123
IDR: 140304123