Засуха как форма абиотического стресса и физиологических маркеров стресса от засухи

Автор: Шумилина Ж.С., Кузнецова А.В., Фролов, Гришина Т.В.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.14, 2018 года.

Бесплатный доступ

Засуха является одной из наиболее распространенных форм абиотического стресса и оказывает непосредственное влияние на жизнеспособность и продуктивность растений. С точки зрения физической химии засуха характеризуется снижением водного потенциала среды и воздействием на многие биохимические процессы в клетке растения, что вызывает развитие окислительного стресса. События, вызванные дефицитом воды, приводят к нарушению электронно-транспортных цепей митохондрий и хлоропластов, что приводит к чрезмерному образованию активных форм кислорода и, как следствие, к развитию окислительного стресса. Окислительный стресс, в свою очередь, вызывает изменения на молекулярном и физиологическом уровнях у растений. Именно поэтому многие исследователи используют широкий спектр физиологических параметров для характеристики развития реакции стресса на засуху у растений. В этом обзоре мы попытались обобщить имеющиеся экспериментальные данные многих исследователей последних лет, объяснив основные механизмы развития стрессовой реакции у растений. В этом обзоре мы попытались обобщить имеющиеся экспериментальные данные многих недавних исследований, объяснив основные механизмы реакции на стресс у растений. В частности, мы обратили внимание на те физиологические параметры, изменения которых происходят у большинства видов растений.

Еще

Короткий адрес: https://sciup.org/143166698

IDR: 143166698

Список литературы Засуха как форма абиотического стресса и физиологических маркеров стресса от засухи

  • Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K. (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep., 25(12), 1263-1274
  • Ahmad P., Jaleel C.A., Salem M.A., Nabi G., Sharma S. (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol., 30(3), 161-167
  • Allen D.J., Ort D.R. (2001) Impact of chilling temperatures onphotosynthesis in warm climate plants. Tren. Plant Sci., 6(1), 36-42
  • Anjum S.A., Wang L.C., Farooq M., Hussain M., Xue L.L., Zou C.M. (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci., 197(9), 177-185
  • Auge R.M. (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycor., 11(1), 3-42
  • Berdanier A.B., Clark J.S. (2016) Multiyear drought-induced morbidity preceding tree death in southeastern. US forests. Ecol. Appl., 26(1), 17-23
  • Bild W., Ciobica A., Padurariu M., Bild V. (2013) The interdependence of the reactive species of oxygen, nitrogen, and carbon. J. Physiol. Biochem., 69(7), 147-154
  • Bittnera M., Janotta D., Ritterb P., Köcherc F., Beesed E. (2012) Functional-structural water flow model reveals differences between diffuse-and ring-porous tree species. Agric. and For. Meteorol., 158(15), 80-89
  • Bratt A., Rosenwasser S., Meyer A., Fluhr R. (2016) Organelle redox autonomy during environmental stress. Plant Cell and Environ., 39(9), 1909-1919
  • Chandra S. (2003) Effects of leaf age on transpiration and energyexchange of Ficus glomerata, a multipurpose tree species of central Himalayas. Physiol. Mol. Biol. Plan., 9(7), 255-260
  • Chastain D.R., Snider J.L., Choinski J.S., Collins G.D., Perry C.D., Whitaker J., Grey T.L. (2016) Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. J. Plant Physiol., 199(3), 18-28
  • Chaves M.M., Flexas J., Pinheiro C. (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103(11), 551-560
  • Chen Y.E., Liu W.J., Su Y.Q., Cui J.M., Zhang Z.W., Yuan M., Zhang H.Y., Yuan S. (2016) Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. Phys. Plantar., 158(2), 225-235
  • Chimenti C.A., Marcantonio M., Hall A.J. (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res., 95(3), 305-315
  • Comas L.H., Becker S.R., Cruz V.M.V., Byrne P.F., Dierig D.A. (2013) Root traits contributing to plant productivity under drought. Front. Plant Sci., 4(1), 399-442
  • Cooke J., Dryden M., Patton T., Brennan J., Barrett J. (2015) The antimicrobial activity of prototype modified honeys that generate reactive oxygen species (ROS) hydrogen peroxide. BMC Research Not., 8(20), 2-5
  • Deeba F., Pandey A.K., Ranjan S., Mishra A., Singh R., Sharma Y.K., Shirke P.A. (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol. Biochem., 53(1), 6-18
  • Fang Y., Xiong L. (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cel. and Molec. Life Sci., 72(4), 673-689
  • Feher J.J., Ford G.D. (1995) A simple student laboratory on osmotic flow, osmotic pressure, and the reflection coefficient. The American J. of Phys., 268(6), 10-20
  • Ferrari C.K., Souto P.C., Franca E.L., Honorio-Franca A.C. (2011) Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms. Arch. Immunol. Ther. Exp., 59(2), 441-448
  • Foyer C.H., Noctor G. (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant., 119(1), 355-364
  • Frolov A., Bilova T., Paudel G., Berger R., Balcke G.U., Birkemeyer C., Wessjohann L.A. (2017). Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol in fusion drought model. J. Plant Physiol., 208, 70-83
  • Fry S.C., Miller J.G., Dumville J.C. (2002) A proposed role for copper ions in cell wall loosening. Plant Soil., 247(1), 57-67
  • Glasauer A., Chandel N.S. (2014) Targeting antioxidants for cancer therapy. Biochem. Pharmacol., 92(1), 90-101
  • Gonzalez A., Martın I., Ayerbe L. (2008) Yield and osmotic adjustment capacity of barley under terminal water-stress conditions. J. of Agr. and Crop Sci., 194, 81-91
  • Grote R., Gessler, A., Hommel R., Poschenrieder W., Priesack E. (2016) Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees -Struc. and Func., 30(5), 1467-1482
  • Hassan W., Noreen H., Rehman S., Gul S., Amjad Kamal M., Kamdem J.P., Zaman B. (2017) Oxidative stress and antioxidant potential of one hundred medicinal plants. Current Top. in Medic. Chem., 17(12), 1336-1370
  • He H., Yan J., Yu X., Liang Y., Fang L., Vibe H., Zhang A. (2017) Biochemical and biophysical research communications the NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana. Biochem. and Biophys. Res. Com., 491(3), 834-839
  • Heber U. (2002) The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosyn. Res., 73(2), 223-231
  • Huang D., Wu W., Abrams S.R., Cutler A.J. (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Exper. Bot., 59(5), 2991-3007
  • Jacob C. (2006) A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat. Prod. Rep., 23(6), 851-863
  • Lipiec J., Doussan C., Nosalewicz A. Kondracka K. (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int. Agrophys., 27, 463-477
  • Liu X., Hua X., Guo J., Qi D., Wang L., Liu Z., Jin Z., Chen S., Liu G. (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotec. Lett., 30(10), 1275-1280
  • Luo Z., Guan H., Zhang X., Zhang C., Liu, N., Li G. (2016) Responses of plant water use to a severe summer drought for two subtropical tree species in the central southern China. J.of Hydr., 8, 1-9
  • Lushchak V.I. (2011) Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol., 101, 13-30
  • Manivannan P., Jaleel C.A., Sankar B., Kishorekumar A., Somasundaram R., Lakshmanan G.M, Panneerselvam R. (2007) Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf. B: Biointerf., 59(10), 141-149
  • Mendivelso H.A., Camarero J.J., Gutiуrrez E., Zuidema P.A. (2014) Agricultural and forest meteorology time-dependent effects of climate and drought on tree growth in a neotropical dry forest. Agricultural and Forest Meteor., 188, 13-23
  • Mhamdi A., Queval G., Chaouch S., Vanderauwera S., Breusegem F., Noctor G. (2010) Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models. J. of Experim. Bot., 61(15), 4197-4220
  • Moinuddin M., Fischer K.D., Sayre M.P., Reynolds M.P. (2005) Osmotic adjustment in wheat in relation to grain yield under water deficit environments. Agron. J., 97(1), 1962-1971
  • Moller I.M. (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Mol. Biol., 52(9), 561-591
  • Moller I.M., Jensen P.E., Hansson A. (2007) Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol., 58(9), 459-481
  • Naim-Feil E., Toren M., Aubert G., Rubinstein M., Rosen A., Eshed R., Sherman A., Ophir R., Saranga Y. (2017) Drought response and genetic diversity in Pisum fulvum, a wild relative of domesticated pea. Crop Sci., 57(3), 1145-1159
  • Nayyar H., Gupta D. (2006) Differential sensitivity of C3 and C4 plants towater deficit stress: association with oxidative stress andantioxidants. Environ. Exp. Bot., 58(1), 106-113
  • Niknam S.R., Ma Q., Turner D.W. (2003) Osmotic adjustment and seed yield of Brassica napus and B. juncea genotypes in a water-limited environment in south-western Australia. Anim. Produc. Sci., 43(3), 1127-1135
  • Osmolovskaya N.G., Shumilina J.S., Grishina T.V., Didio A.V., Lukasheva E.M., Bilova T.E., Frolov A.A. (2017) Modeling of Drought in the Experiment and Assessment of its Effects on Plants. J. Stress Physiol. Biochem., 13(4), 110-120
  • Pfannschmidt T. (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci., 8(1), 33-41
  • Rauf S., Sadaqat H.A. (2008) Identification of physiological traits and genotypes combined to high achene yield in sunflower (Helianthus annuus L.) under contrasting water regimes. Austr. J. of Crop Sci., 1(1), 23-30
  • Rhoads D.M., Umbach A.L., Subbaiah C.C., Siedow J.N. (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol., 141(3), 357-366
  • Sena L.A., Chandel N.S. (2012) Physiological roles of mitochondrial reactive oxygen species. Mol. Cel., 48(2), 158-167
  • Shanker A.K., Maheswari M., Yadav S.K., Desai S., Bhanu D., Attal N.B., Venkateswarlu B. (2014) Drought stress responses in crops. Funct. and Integ. Gen., 14(1), 11-22
  • Siddique B., Hamid A., Islam M. (2001) Drought stress effects onwater relations of wheat. Bot. Bull. Acad. Sin., 41(1), 35-39
  • Skulachev V.P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J. Alzheimers Dis., 28(3), 283-289
  • zechynska M., Skrzypek E., Dabrowska G., Biesaga-Koscielniak J., Filek M., Wedzony M. (2007) The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol. Plant., 29(7), 327-337
  • Taheri N., Zarghami R., Oveysi M., Tarighaleslami M. (2012) The effect of source limitations on yield and yield components of soybean (Glycine max L.) under drought stress. World Appl. Sciences J., 18(6), 788-795
  • Ummenhofer C.C., Meehl G.A. (2017) Extreme weather and climate events with ecological relevance. Philosoph. Trans. of the R. Soc., 372, 1-12
  • Verslues P.E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J.-K. (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J., 45(4), 523-539
  • Wang F.L., Zhou J., Pan L., Li G., Zaidi Z., Cheng F. (2016) Senescence-specific change in ROS scavenging enzyme activities and regulation of various SOD isozymes to ROS levels in psf mutant rice leaves. Plant Physiol. and Biochem., 109(1), 248-261
  • Wang J., Griffiths R., Ying J., Mc Court P., Huang Y. (2009) Development of drought-tolerant (Brassica napus L.) through genetic modulation of ABAmediated stomata responses. Crop Sci., 49(1), 1539-1554
  • Wang L., Liang W., Xing J., Tan F., Chen Y., Huang L., Chen, W. (2013) Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) druce. J. of Proteome Res., 12(11), 5124-5136
  • Wu Y., Cosgrove D.J. (2000) Adaptation of roots to low water potentialsby changes in cell wall extensibility and cell wall proteins. J. Exp. Bot., 51(3), 1543-1553
  • Yang J., Ordiz M., Jaworski J.G., Beachy R.N. (2011) Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Phys. and Biochem., 49(12), 1448-1455
  • Zhang J, Kirkham M.B. (1996) Antioxidant response to drought insunflower and sorghum seedlings. New Phytol., 132(8), 361-373
Еще
Статья обзорная