Zinc toxicity on antioxidative response in (Zea mays L.) at two different pH
Автор: Hosseini Zahra, Poorakbar Latifeh
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.9, 2013 года.
Бесплатный доступ
Zn is the second most abundant transition metal after iron (Fe). Excess Zn can have negative effects on plants. The effect of Zn at two different pH on lipid peroxidation (MDA), membrane permeability (EC), hydrogen peroxide (H 2O 2), non-protein thiols (NPT) and the activities of major antioxidant enzymes Zea mays were investigated under controlled growth conditions. Zn-excess conditions increased the EC, MDA, H 2O 2 content and non-protein thiols and also activities of antioxidant enzymes were increased. Also zinc toxicity was higher in 4.5 pH than 7.5 pH.
Zinc, ph, antioxidant enzymes, mda, h2o2, ec, npt
Короткий адрес: https://sciup.org/14323724
IDR: 14323724
Список литературы Zinc toxicity on antioxidative response in (Zea mays L.) at two different pH
- Aebi, H.E. (1983) Methods of Enzymatic Analysis Verlag Chemic: Deer_eld Beach, FL, 3rd ed. 3, pp. 273-286.
- Autumn, S., Wang, J., Scott, A., Rufus, L., Chaney Thiery, A., Dolorme and Ronger, D. (2006) Reeves soil pH effect on uptake of Cd and Zn by Thlaspi caerulescens. Plant and soil., 281, 325-337.
- Cakmak, I., Yilmaz, A., Ekiz, H., Torun, B., Erenoglu, B. and Braun, H.J. (1996) Zinc deficiency as a critical nutritional problem in wheat production in Central Anatolia. Plant and Soil., 180, 165-172.
- Chang, H.B., Lin, C.W. and Huang, H.J. (2005) Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul., 46, 261-266.
- Chaney, R.L. (1993) Zinc phytotoxicity. In: Robson A.D. (Ed.), Zinc in soil and plants. Kluwer Academic Publishers, Dordrecht, the Netherlands: 135-150.
- Edreva, A. and Hadjiiska, E. (1984) About the determination of sulfhydril(thiol) group content in plant material. Plant Physiol. (Bulg)., 10, 73-83.
- Foyer, C.H. and Halliwell, B. (1976) The Fresence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta., 133, 21-25.
- Gao, Y., Miao, C.Y., Xia, J., Mao, L., Wang, Y.F. and Zhou, P. (2011) Effects of coexisting plant species on soil enzyme activities and microbial community structure in multiple heavy metal contaminated soils: PCR-RAPD method. Front Environ Sci Eng China.
- Gao, Y., Zhou, P., Mao, L., Shi, W.J. and Zhi, Y.E. (2010) Phytoextraction of Cd and physiological changes in Solanum nigrum as a novel hyperaccumulator. Russ J Plant Physiol., 57(4), 538-546.
- Havlin, J.L., Beaton, J.D., Tisdale, S.L. and Nelson, W.L. (2005) Soil fertility and fertilizer: An Introduction to Nutrient Management. Upper Saddle River, Newjersey. 515 pp.
- Heath, R.L. and Pacher, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometery of fatty acid peroxidation. Archives of Biochemistry and Biophysics., 125, 189-198.
- Jana, S. and Choudhuri, M.A. (1981) Glycolate metabolism of three submerged aquatic anagiosperms during aging. Aquatic Botany., 12, 345-354.
- Jain, R., Srivastava, S., Solomon, S., Shrivastava, A.K., Chandra, A. (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharumspp.). Acta Physiol. Plant., 32, 979-986.
- Liu, Z.J., Zhang, X.L., Bai, J.G., Suo, B.X., Xu, P.L. and Wang, L. (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in droughtstressed cucumber leaves. Sci. Hortic., 121, 138-143.
- Lutts, S., Kinet, J.M., and Bouharmont, J. (1996) NaCl-induced senescence in leaves of rice (Oriza sativa L.) cultivar differing in salinity resistance. Annal of Botany., 78, 389-398.
- McBride, M., Sauve, S. and Hendershot, W. (1997) Solubility control of Cu, Zn, Cd and Pb in contaminated soils.European Journal of Soil Science., 48, 337-346.
- McGeer, J.C., Szebedinszky, C., McDonald, D.G. and Wood, C.M. (2000) Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Lono-regulatory disturbance and metabolic costs. Aqua. Toxicol., 50, 231-243.
- Miller, G., Shulaev, V. and Mitter, R. (2008) Reactive oxygen signaling and abiotic stress. Physiol. Plant., 133, 481-489.
- Nakano, Y. and Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867-880.
- Panda, S.K., Chaudhury, I. and Khan, M.H. (2003) Heavy metals induced lipid peroxidation and effect antioxidants in wheat leaves. Biol. Plant., 46, 289-294.
- Rout, G.R. and Das, P. (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie., 23, 3-11.
- Robinson, B., Malfroy, H., Chartres, C., Helyar, K. and Ayers, G. (1995) The sensitivity of ecosystems to acid inputs in the Hunter Valley. Australia. Water, Air and Soil Pollution., 85, 1721-1726.
- Stoyanova, Z. and Doncheva, S. (2002) The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Braz. J. Plant Physiol., 14, 111-116.
- Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S. and Cakmak, I. (2006) Antioxidant defence system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol., 20(3), 181-189.
- Updhyaya, A., Sankhla, D., Davis, T.D., Sankhla, N. and Smidth, B.N. (1985) Effect of paclobutrazol on the activies of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Plant Physiol., 121, 453-461.
- Vaillant, N., Monnet, F., Hitmi, A., Sallanon, H. and Coudret, A. (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere., 59, 1005-1013.