3D-принтинг в урологии как тренд персонализированной медицины

Автор: Гулиев Б.Г., Комяков Б.К., Талышинский А.Э.

Журнал: Экспериментальная и клиническая урология @ecuro

Рубрика: Экспериментальная урология

Статья в выпуске: 3 т.14, 2021 года.

Бесплатный доступ

Введение. Технология трехмерной печати активно внедряется в практику урологов. Помимо улучшения процесса общения с пациентами, данная технология позволяет улучшать планирование и проведение операции. Цель. Изучение литературы для определения полезности трехмерной печати в практике урологов. Материалы и методы. Поиск публикаций для включения в данный обзор проводился в базах данных Embase, Medline, Google Scholar, Scopus в период до сентября 2020 года. Критериями включения были: доступность полной статьи, использование 3D моделей для обучения пациентов или ординаторов, а также их использования в планировании и проведении операций у пациентов старше 18 лет. Результаты. В результате поиска было выявлено 197 публикаций, из которых 40 было отобрано для дальнейшего обзора с разделением по нозологиям. 11 статей относились к изучению полезности печатных моделей в консультировании пациентов с МКБ, планировании и тренировке ретроградной и перкутанной нефролитотрипсии. В 20 статьях печатная модель применялась для консультирования пациентов с новообразованиями почек, планирования вмешательства и интраоперационной навигации. В 9 работах опубликованы результаты применения печатных моделей в общении с пациентами с опухолью предстательной железы, в улучшении определения ее локализации и планирования операции, а также непосредственно во время вмешательства для навигации. Заключение. Создание трехмерных печатных моделей органов является перспективным трендом урологии. Несмотря на существующие ограничения, данное направление становится все более доступным как для пациентов, так и для врачей.

Еще

3d печать, обучение, консультирование, планирование операций, мочекаменная болезнь, новообразования почки, новообразования предстательной железы

Короткий адрес: https://sciup.org/142231516

IDR: 142231516   |   DOI: 10.29188/2222-8543-2021-14-3-28-39

Список литературы 3D-принтинг в урологии как тренд персонализированной медицины

  • Schubert C, Van Langeveld MC, Donoso LA. Innovations in 3D printing: A 3D overview from optics to organs. Br J Ophthalmol 2014;98(2):159-61. https://doi.org/10.1136/bjophthalmol-2013-304446.
  • Hull CW. Apparatus for production of three-dimensional objects by stereolith-ography. Google Patents 1986.
  • Favorito LA. Kidney anatomy: Three dimensional (3D) printed pelvica-lyceal system models of the collector system improve the diagnosis and treatment of stone disease. International Braz J Urol 2017;(43):381-382. https://doi.org/10.1590/S1677-5538.IBJU.2017.03.01.
  • Atalay HA, Canat HL, Ulker V, Alkan I, Ozkuvanci U, Altunrende F. Impact of personalized three-dimensional (3D) printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Int Braz J Urol 2017;43(3):470-475. https://doi.org/10.1590/S1677-5538.IBJU.2016.0441.
  • Guliev B, Komyakov B, Talyshinskii A. The use of the three-dimensional printed segmented collapsible model of the pelvicalyceal system to improve residents' learning curve. Turkish J Urol 2020;46(3):226-230. https://doi.org/10.5152/tud.2019.19161.
  • Xu Y, Yuan Y, Cai Y, Li X, Wan S, Xu G. Use 3D printing technology to enhance stone free rate in single tract percutaneous nephrolithotomy for the treatment of staghorn stones. Urolithiasis 2019;48(6):509-516. https://doi.org/10.1007/s00240-019-01164-8.
  • Christiansen AR, Shorti RM, Smith CD, Prows WC, Bishoff JT. Intraoperative utilization of advanced imaging modalities in a complex kidney stone case: a pilot case study. World J Urol 2018;36(5):733-743. https://doi.org/10.1007/s00345-018-2260-4.
  • Kuroda S, Kawahara T, Teranishi J, Mochizuki T, Ito H, Uemura H. A case of allograft ureteral stone successfully treated with antegrade ureteroscopic lithotripsy: use of a 3D-printed model to determine the ideal approach. Urolithiasis 2019;47(5):467-471. https://doi.org/10.1007/s00240-019-01153-x.
  • Ghazi A, Campbell T, Melnyk R, Feng C, Andrusco A, Stone J, et al. Validation of a lull-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol 2017;31(12):1314-1320. https://doi.org/10.1089/end.2017.0366.
  • Li D, Suarez-Ibarrola R, Choi E, Jeong M, Gratzke C, Miernik A, et al. Soft phantom for the training of renal calculi diagnostics and lithotripsy. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019:3716-3719. https://doi.org/10.1109/EMBC.2019.8856426.
  • Turney BW. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access. J Endourol 2014;28(3):360-363. https://doi.org/10.1089/end.2013.0616.
  • Aro T, Lim S, Petrisor D, Koo K, Matlaga B, Stoianovici D. Personalized renal collecting system mockup for procedural training under ultrasound guidance. J Endourol 2020;34(5):619-623. https://doi.org/10.1089/end.2019.0735.
  • Golab A, Smektala T, Krolikowski M, Slojewski M. Percutaneous nephrolitho-tomy using an individual 3-dimensionally printed surgical guide. Urol Int 2018;100(4):485-7. https://doi.org/10.1159/000446291.
  • Аляев Ю.Г., Сирота Е.С., Безруков Е.А., Али С.Х., Букатов М.Д., Летунов-ский А.В., Бядретдинов И.Ш. Небиологический 3D-печатный тренажер для освоения чрескожной нефролитотрипсии. Урология 2018;(1);10-14. [Alyaev Yu.G., Sirota E.S., Bezrukov E.A., Ali S.H., Bukatov M.D., Letunovskiy A.V., Byadretdinov I.Sh. [Non-biological 3D printed trainer for mastering percutaneous nephrolithotripsy. Urologiya = Urologiai 2018;(1);10-14. (In Russian)] https://doi.org/https://dx.doi.org/10.18565/urology.2018.1.10-14.]
  • Гаджиев Н.К., Бритов В.П., Григорьев В.Е., Мазуренко Д.А., Малхасян В.А., Писарев А.В. c соавт. Создание аутентичной модели чашечно-лоханочной системы почки пациентов для тренировки доступа при перкутанной неф-ролитотомии при сложных формах камней почек. Экспериментальная и клиническая урология 2017;(2):52-56. [Gadzhiev N.K., Britov V.P., Grigorev V.E., Mazurenko D.A., Malhasyan V.A., Pisarev A.V. et al. Creation of an authentic model of the renal pyelocaliceal system of patients for training access for percutaneous nephrolithotomy for complex forms of kidney stones. Eksperimentalnaya i klinicheskaya urologiya = Experimental and clinical urology 2017;(2):52-56. (In Russian)].
  • Schmit C, Matsumoto J, Yost K, Alexander A, Ness L, Kurup AN, et al. Impact of a 3D printed model on patients' understanding of renal cryoablation: a prospective pilot study. Abdom Radiol 2019;44(1):304-309. https://doi.org/10.1007/s00261-018-1710-1.
  • Teishima J, Takayama Y, Iwaguro S, Hayashi T, Inoue S, Hieda K, et al. Usefulness of personalized three-dimensional printed model on the satisfaction of preoperative education for patients undergoing robot-assisted partial nephrectomy and their families. Int Urol Nephrol 2018;50(6):1061-1066. https://doi.org/10.1007/s11255-018-1881-2.
  • Bernhard JC, Isotani S, Matsugasumi T, Duddalwar V, Hung AJ, Suer E, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol 2016;34(3):337-345. https://doi.org/10.1007/s00345-015-1632-2.
  • Wake N, Rosenkrantz AB, Huang R, Park KU, Wysock JS, Taneja SS, et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Print Med 2019;5(1):40-48. https://doi.org/10.1186/s41205-019-0041-3.
  • Lee H, Nguyen NH, Hwang S Il, Lee HJ, Hong SK, Byun SS. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. Int Braz J Urol 2018;44(5):952-957. https://doi.org/10.1590/S1677-5538.IBJU.2018.0162.
  • Kyung YS, Kim N, Jeong IG, Hong JH, Kim CS. Application of 3-D printed kidney model in partial nephrectomy for predicting surgical outcomes: a feasibility study. Clin Genitourin Cancer 2019;17(5):878-884. https://doi.org/ 10.1016/j.clgc.2019.05.024.
  • Knoedler M, Feibus AH, Lange A, Maddox MM, Ledet E, Thomas R, et al. Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology 2015;85(6):1257-1262. https://doi.org/10.1016Zj.urology.2015.02.053.
  • Porpiglia F, Bertolo R, Checcucci E, Amparore D, Autorino R, Dasgupta P, et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists' and patients' perception. World J Urol 2018;36(2):201-207. https://doi.org/10.1007/s00345-017-2126-1.
  • Zhang Y, Ge H Wei, Li N Chen, Yu C Fan, Guo H Feng, Jin S Hua, et al. Evaluation of three-dimensional printing for laparoscopic partial nephrectomy of renal tumors: a preliminary report. World J Urol 2016;34(4):533-537. https://doi.org/10.1007/s00345-015-1530-7.
  • Maddox MM, Feibus A, Liu J, Wang J, Thomas R, Silberstein JL. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J Robot Surg 2018;12(1):27-33. https://doi.org/10.1007/s11701-017-0680-6.
  • Komai Y, Sugimoto M, Gotohda N, Matsubara N, Kobayashi T, Sakai Y, et al. Patient-specific 3-dimensional printed kidney designed for 4d surgical navigation: a novel aid to facilitate minimally invasive off-clamp partial nephrectomy in complex tumor cases. Urology 2016;91:226-233. https://doi.org/ 10.1016/j.urology.2015.11.060.
  • Wake N, Rude T, Kang SK, Stifelman MD, Borin JF, Sodickson DK, et al. 3D printed renal cancer models derived from MRI data: application in pre-surgical planning. Abdom Radiol 2017;42(5):1501-1509. https://doi.org/10.1007/s00261-016-1022-2.
  • Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology 2014;84(2):268-273. https://doi.org/10.1016/j.urology.2014.03.042.
  • Libby RS, Silberstein JL. Physical model of clear-cell renal carcinoma with inferior vena cava extension created from a 3-dimensional printer to aid in surgical resection: a case report. Clin Genitourin Cancer 2017;15(5):867-869. https://doi.org/10.1016/j.clgc.2017.04.025.
  • Monda SM, Weese JR, Anderson BG, Vetter JM, Venkatesh R, Du K, et al. Development and validity of a silicone renal tumor model for robotic partial nephrectomy training. Urology 2018;114:114-120. https://doi.org/ 10.1016/j.urology.2018.01.030.
  • Fan G, Li J, Li M, Ye M, Pei X, Li F, et al. Three-dimensional physical model-assisted planning and navigation for laparoscopic partial nephrectomy in patients with endophytic renal tumors. Sci Rep 2018;8(1):103-109. https://doi.org/ 10.1038/s41598-017-19056-5.
  • Belenchón I, Ruíz CB, Ciriza G, Dos Santos GV, Rivas González JA, García C, et al. How to obtain a 3D printed model of renal cell carcinoma (RCC) with venous tumor thrombus extension (VTE) for surgical simulation (phase I NCT03738488). Updates Surg2020;72(4):1237-1246. https://doi.org/10.1007/s13304-020-00806-6.
  • Golab A, Smektala T, Kaczmarek K, Stamirowski R, Hrab M, Slojewski M. Laparoscopic Partial Nephrectomy Supported by Training Involving Personalized Silicone Replica Poured in Three-Dimensional Printed Casting Mold. J Laparoendosc Adv Surg Tech 2017;27(4):420-422. DOI: 10.1089/lap.2016.0596.
  • Jian C, Shuai Z, Mingji Y, Kan L, Zhizhong L, Weiqing H, et al. Evaluation of three-dimensional printing assisted laparoscopic cryoablation of small renal tumors: a preliminary report. Urol J 2020;3:42-47. https://doi.org/ 10.22037/uj.v0i0.5541.
  • Saba P, Belfast E, Melnyk R, Patel A, Kashyap R, Ghazi A. Development of a high-fidelity robot-assisted kidney transplant simulation platform using three-dimensional printing and hydrogel casting technologies. J Endourol 2020;34(10):1088-1094. https://doi.org/10.1089/end.2020.0441.
  • Javan R, Herrin D, Tangestanipoor A. Understanding spatially complex segmental and branch anatomy using 3D printing: liver, lung, prostate, coronary arteries, and circle of Willis. Acad Radiol 2016;23(9):1183-1189. https://doi.org/10.1016/j.acra.2016.04.010.
  • Wu HH, Priester A, Khoshnoodi P, Zhang Z, Shakeri S, Afshari Mirak S, et al. A system using patient-specific 3D-printed molds to spatially align in vivo MRI with ex vivo MRI and whole-mount histopathology for prostate cancer research. J Magn Reson Imaging 2019;49(1):270-279. https://doi.org/10.1002/jmri.26189.
  • Wang Y, Gao X, Yang Q, Wang H, Shi T, Chang Y, et al. Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy. Asian J Urol 2015;2(4):214-219. https://doi.org/10.1016/j.ajur.2015.09.002.
  • Chandak P, Byrne N, Lynch H, Allen C, Rottenberg G, Chandra A, et al. Three-dimensional printing in robot-assisted radical prostatectomy - an Idea, Development, Exploration, Assessment, Long-term follow-up (IDEAL) Phase 2a study. BJU Int 2018;122(3):360-361. https://doi.org/10.1111/bju.14189.
  • Jomoto W, Tanooka M, Doi H, Kikuchi K, Mitsuie C, Yamada Y, et al. Development of a three-dimensional surgical navigation system with magnetic resonance angiography and a three-dimensional printer for robot-assisted radical prostatectomy. Cureus 2018;10(1):7-11. https://doi.org/10.7759/cureus.2018.
  • Ebbing J, Jaderling F, Collins JW, Akre O, Carlsson S, Hoijer J, et al. Comparison of 3D printed prostate models with standard radiological information to aid understanding of the precise location of prostate cancer: A construct validation study. PLoS One 2018;13(6)... https://doi.org/10.1371/journal.pone.0199477.
  • DeZeeuw J, O'Regan NB, Goudie C, Organ M, Dubrowski A. Anatomical 3D-Printed silicone prostate gland models and rectal examination task trainer for the training of medical residents and undergraduate medical students. Cureus 2020;12(7)... https://doi.org/10.7759/cureus.9020.
  • Darr C, Finis F, Wiesenfarth M, Giganti F, Tschirdewahn S, Kraffi U, et al. Three-dimensional magnetic resonance imaging-based printed models of prostate anatomy and targeted biopsy-proven index tumor to facilitate patient-tailored radical prostatectomy—a feasibility study. Eur Urol Oncol 2020. Epub ahead of print. https://doi.org/10.1016/j .euo.2020.08.004.
  • Wong NC, Hoogenes J, Guo Y, Quantz MA, Matsumoto ED. Techniques: Utility of a 3D printed bladder model for teaching minimally invasive urethrovesical anastomosis. Can Urol Assoc J 2017;11(7):321-322. https://doi.org/10.5489/cuaj.4262.
Еще
Статья научная