A method for determining the thermal resistance of a multilayer package of thermal insulation textile materials under blowing conditions

Автор: Sharpar N.M., Zhmakin L.I., Vlasov I.N., Bokova E.S.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Manufacturing technology for building materials and products

Статья в выпуске: 1 Vol.17, 2025 года.

Бесплатный доступ

Introduction. Textile industrial materials, particularly in the form of multilayer packages, are extensively utilized as thermal insulation coatings in construction. One of the functional characteristics of these materials is their effective performance under conditions of strong wind exposure. The thermal insulation characteristics of textile thermal insulation materials depend on the value of their air permeability, while minimal thermal resistance is observed from the blowing side. Materials and research methods. The article lists methods that allow for the most accurate calculation of the thermal resistance of multilayer packages consisting of textile building materials under wind-blowing conditions. In this case, the thermal-insulating properties of the materials included in the package will depend on their air permeability. Results and discussion. Our mathematical model used for calculating the thermal resistances of building envelopes, containing thermal insulation packages based on textile materials, includes data on the air permeability of individual layers, as well as on the thickness of their air interlayers. The study presents a scheme of thermal insulation layers that shows temperature curves plotted on it. Stationary medium conditions were used as initial information on temperature distribution between the layers. Further research established that an increase in air velocity of the package affected by the wind influenced the reduction of thermal resistance. Conclusion. The study presents formulas used in determining the thermal resistance of insulating layers and interlayers of building envelopes affected by the wind, under conditions of frontal impact of the air flow, taking into account the established parameters of air permeability of the layers within the package.

Еще

Air permeability coefficient, textile materials, heat-insulating building envelopes, thermal resistance, material packages

Короткий адрес: https://sciup.org/142243354

IDR: 142243354   |   DOI: 10.15828/2075-8545-2025-17-1-23-31

Список литературы A method for determining the thermal resistance of a multilayer package of thermal insulation textile materials under blowing conditions

  • Ananyev A.I., Khorov O.A., Evseev L.D. et al. Thermal Technical Indicators of Building Materials and Structures. Stroitelny Expert. 2005;16(203):17-23. (In Russ.)
  • Kiselev I.Ya. Heat transfer through fiber and cellular effective heat-insulating materials. In book: Building physics in the 21st century. M.: NII SF; 2006. (In Russ.)
  • Bogoslovsky V.K., Gagarin V.G. Moisture transfer in materials of enclosing structures. Russian Architectural and Construction Encyclopedia. Vol. 2. Moscow: Ministry of Construction of the Russian Federation, 1995. 50-53. (In Russ.)
  • Bogoslovsky V.N., Gagarin V.G., Mogutov V.A. Heat-protective properties of enclosing structures. In: Russian architectural and construction encyclopedia. Т. 2. Moscow: Ministry of Construction of the Russian Federation; 1995. 460-462. (In Russ.)
  • Bogoslovskiy V.N. Stroitelnaya Teplofizika: Teplofizicheskie osnovy heating, ventilation and air conditioning. SPb: AVOK Severo-Zapad; 2006. 399. (In Russ.)
  • Gagarin V.G. Theoretical preconditions of calculation of the reduced resistance to heat transfer of enclosing structures. Stroitelnye materialy. 2010;12:4-12. (In Russ.). – EDN: NQTZMT
  • Gagarin V.G. Teplofizicheskie problemy sovremennye wall enclosing structures of multistoried buildings. Academia. Architecture and Construction. 2009;5:297-305. (In Russ.). – EDN: MTPDUP
  • Belyaev N.M., Ryadno A.A. Methods of the theory of heat conduction. M: Vysshaya shkola; 1982. 304. (In Russ.)
  • Kiselev I.Ya. Thermal conductivity of effective heat-insulating building materials and products. Academia. 2004;4:36-41. (In Russ.)
  • Kutateladze S.S. Fundamentals of the theory of heat exchange. Novosibirsk: Atomizdat; 1970. 416. (In Russ.)
  • Lykov A.V. Heat and Mass Exchange: (Reference book). 2nd ed., rev. and supplement. M: Energia; 1978. 480.
  • Malyavina E.G. Heat Losses of a Building: Reference Manual. M: AVOK-PRESS; 2007. 144.
  • Shlykov Y.P., Ganin E.A., Tsarevsky S.N. Contact thermal resistance. M: Energia; 1977. 327. (In Russ.)
  • Popov VM. Heat exchange in the contact zone of detachable and non-detachable joints. M: Energia; 1971. 216. (In Russ.). – EDN: RELYGR
  • Ivanov V.V., Vidin Yu.V., Kolesnik V.A. Processes of heating of multilayer bodies by radiant-convective heat. Rostov n/D: Izd. Rost. un-ta; 1990. 159. (In Russ.)
  • Energosberezhenie i upravlenie energeticheskoe effektivnosti. Available at: https://www.audar-info.ru/na/editSection/index/type_id/3/doc_id/5265/release_id/18634/ (date of reference: 01.09.2022). (In Russ.)
  • Thermal protection of buildings. Available at: http://sniprf.ru/sp50-13330-2012 (date of reference: 08.09.2022). (In Russ.)
  • Baikov I.R., Smorodova O.V., Trofimov A.Yu., Kuznetsova E.V. Experimental study of heat-insulating nanomaterials on the basis of aerogels. Nanotechnologies in construction. 2019;11(4):462-477. https://doi.org/10.15828/2075-8545-2019-11-4-462-477 EDN: UJZLCI
  • Sharpar N.M. Development of methods for studying the thermophysical properties of nonwoven materials. Dissertation... candidate of technical sciences: 05.19.01. Moscow State University of Design and Technology. Moscow, 2013. – S. 135. – EDN: SUWQHL
  • Stroitelnaya klimatologiya. Available at: https://docs.cntd.ru/document/573659358 (date of reference: 10.09.2022). (In Russ.)
  • Designing of thermal protection of buildings. Available at: https://www.dokipedia.ru/document/1724245 (date of reference: 15.09.2022). (In Russ.)
  • Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha. M: Energia; 1975. 488.
  • Dulnev G.N., Zarichniak YP. Heat conductivity of mixtures and composite materials. L: Energia; 1974. 264. (In Russ.)
  • Kornyukhin I.P. Heat and mass exchange in heat engineering of textile productions: Textbook for universities. Moscow: A.N. Kosygin Moscow State Technical University; 2004. 598. (In Russ.)
  • Special functions. Formulas, Graphs, Tables. Per. from the 6th revised German edition by Jahnke E., Emde F., Loesch F. 3rd ed. stereotype. M: Nauka; 1977. 344.
  • Zhmakin L.I., Osmanov Z.N., Sharpar N.M. Experimental Determination of the Longitudinal Component of the Coefficient of Air Permeability of Textile Materials. Fibre Chemistry. 2017 May;49(1):60-63. https://doi.org/10.1007/s10692-017-9843-5 EDN: XNNYTI
  • Sharpar N.M., Zhmakin L.I. Experimental determination of air permeability coefficient of textile materials. Izvestiya vysshee obrazovaniya vysshee obrazovaniya. Technologiya tekstilnoy promyshlennosti. 2012;6(342):148-151.
  • (In Russ.). – EDN: RDUVIF
  • Kolesnikov P.A. Fundamentals of design of heat-protective clothing. Moscow: Light Industry; 1971. 109. (In Russ.)
Еще
Статья научная