A moving black hole in TEGR as a moving matter ball

Бесплатный доступ

Possibilities of the covariant with respect to both coordinate and local Lorentz transformations formalism developed earlier in the framework of Teleparallel Equivalent of General Relativity (TEGR) are studied. The formalism is applied to a solution for a moving with constant velocity (with respect to distant static observers) Schwarzschild black hole. Coordinate and Lorentz invariant global conserved mass and momentum are constructed. The acceptable results are obtained in spite of the solution under consideration has no, at least, Killing vectors of space displacements. Calculations are quite analogous to calculating the mass and momentum of a moving matter ball in Minkowski space, and this analogy is used essentially.

Еще

Teleparallel gravity, conserved quantities, black holes

Короткий адрес: https://sciup.org/142235696

IDR: 142235696   |   DOI: 10.17238/issn2226-8812.2022.2.18-25

Список литературы A moving black hole in TEGR as a moving matter ball

  • Aldrovandi R., Pereira J.G. Teleparallel Gravity: An Introduction. Dordrecht, Heidelberg, New York, London: Springer; 2013.
  • Kr²²ák M., van den Hoogen R.J., Pereira J.G., Boehmer C.G., Coley A.A. Class. Quantum Grav., 2019, 36(18), 183001. ArXiv:1810.12932 [gr-qc].
  • Bahamonde S., Dialektopoulos K.F., Escamilla-Rivera C., Farrugia G., Gakis V., Hendry M., Hohmann M., Said J.L., Mifsud J., Valentino E.D. Teleparallel gravity: From theory to cosmology. ArXiv:2106.13793 [gr-qc].
  • Mikhail F.I., Wanas M.I., Hindawi A., Lashin E.I. Int. J. Theor. Phys., 1993, 32(September), 1627 1642. ArXiv:gr-qc/9406046.
  • Maluf J.W. Grav. Cosmol., 2005, 11(3), 284 288. ArXiv:gr-qc/0412055.
  • Maluf J.W. Annalen der Phys., 2013, 525(5), 339 357. ArXiv:1303.3897 [gr-qc].
  • Maluf J.W., Faria F.F., Ulhoa S.C. Class. Quantum Grav., 2007, 24(10), 2743 2754. ArXiv:0704.0986 [gr-qc].
  • Lucas T.G., Obukhov Y.N., Pereira J.G. Phys. Rev. D, 2009, 80(6), 064043. ArXiv:0909.2418 [gr-qc].
  • Obukhov Y.N., Rubilar G.F. Phys. Rev. D, 2006, 73(12), 064043. ArXiv:gr-qc/0605045.
  • Obukhov Y.N., Rubilar G.F. Phys. Rev. D, 2006, 74(6), 064002. ArXiv:gr-qc/0608064.
  • Obukhov Y.N., Rubilar G.F., Pereira J.G. Phys. Rev. D, 2006 74(10), 104007. ArXiv:gr-qc/0610092.
  • Emtsova E.D., Petrov A.N., Toporensky A.V. Class. Quantum Grav., 2020, 37(9), 095006. ArXiv:1910.08960.
  • Emtsova E.D., Petrov A.N., Toporensky A.V. Journal of Physics: Conference Series, 2020, 1557(May), 012017.
  • Hartle J.B., Thorne K.S., Price R.H. Gravitational interaction of a black hole with distant bodies. In Black Holes: The Membrane Paradigm Eds: Thorne K.S., MacDonald D.A.; New Haven and London: Yale University Press, 1986. Pp. 146 180, .
  • Petrov A.N., Kopeikin S.M., Lompay R.R., Tekin B. Metric Theories of Gravity: Perturbations and Conservation Laws. Berlin: de Gruyter, 2017. Pp. 60 84.
  • Emtsova E.D., Kr²²ák M., Petrov A.N., Toporensky A.V. Eur. Phys. J. C, 2021, 81(August), 743. ArXiv:2105.13312 [gr-qc].
  • Emtsova E.D., Kr²²ák M., Petrov A.N., Toporensky A.V. Journal of Physics: Conference Series, 2021, 2081(July), 012017.
Еще
Статья научная