Многоточечная начально-конечная задача для линейной модели плоскопараллельной термоконвекции вязкоупругой несжимаемой жидкости
Бесплатный доступ
Линейная модель плоскопараллельной термоконвекции вязкоупругой несжимаемой среды Кельвина - Фойгта представляет собой гибрид системы уравнений Осколкова и уравнения теплопроводности в приближении Обербека - Буссинеска, заданных в двумерной области с условиями Бенара. Целью нашего исследования является разрешимость этой модели с так называемыми многоточечными начально-конечными условиями. Такие условия используются для восстановления параметров изучаемых процессов по результатам многочисленных наблюдений с различных точек и в различные моменты времени, что позволяет, например, прогнозировать аварийные ситуации, в том числе нарушение непрерывности процесса термоконвекции в результате нарушения технологии и т.п. Ранее для моделей термоконвекции изучалась разрешимость задач Коши и начально-конечной, кроме того, была рассмотрена устойчивость решений задачи Коши. Многоточечная начально-конечная задача для этой модели изучается впервые. Кроме того, в данной работе приводится доказательство обобщенной теоремы о расщеплении в случае относительно секториального оператора. Основной результат статьи - теорема об однозначной разрешимости многоточечной начально-конечной задачи для линейной модели плоскопараллельной термоконвекции вязкоупругой несжимаемой жидкости.
Многоточечная начально-конечная задача, уравнение соболевского типа, обобщенная теорема о расщеплении, линейная модель плоскопараллельной термоконвекции вязкоупругой несжимаемой жидкости
Короткий адрес: https://sciup.org/147159278
IDR: 147159278 | DOI: 10.14529/mmp140301